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An elementary particle model is proposed drawn from the string model and 
Yang-Mills theory. Instead of describing a particle as a mathematical point, we 
identify it as three-dimensional submanJfold of some metric space H. This 
generalization leads to a topological classification of particles and their interac- 
tion vertices. A topological explanation for the generation degeneracy is pro- 
posed. Th~ dynamics of the theory is based on the following assumptions. First, 
the theory should have the formal structure of the Einstein-Yang-MiUs theory 
defined on a 4-surface describing the "orbits" of particles. Second, the boundary 
components of the 3-manifold should carry various elementary particle char- 
acteristics. Finally, only the natural geometric structures associated with space H 
should be used in the construction of the dynamics. It is found that the choice 
H = V4X CP2, where V 4 denotes either Minkowski space or its light cone 
(favored by cosmological considerations), produces all the basic predictions of 
the standard model (sin20w = 9/26). The isometry group of CP2 is SU(3) and is 
interpreted as a color group. Since color is related to CP2 translational degrees of 
freedom and CP 2 has "radius" of order G ~/2, the uncertainty principle suggests 
the mass scale G- t /2  for colored states. A unified semiclassical description of 
hadrons as stringlike objects is proposed and gluons are identified as topologi- 
caily nontrivial excitations of these objects. Rather general arguments suggest 
that QCD describes the interaction between gluons and quarks, which turns out 
to be only one aspect of strong interactions. In fact, the so-called planar 
diagrams have nothing to do with QCD in the proposed scheme. Finally, 
senficlassical considerations suggest that the theory is also capable of describing 
gravitational phenomena and a topological mechanism generating the classical 
space-time is proposed. 

1. I N T R O D U C T I O N  

I t  is g e n e r a l l y  b e l i e v e d  t h a t  g a u g e  i n v a r i a n c e  p l a y s  a c e n t r a l  ro le  in  

p a r t i c l e  phys i c s .  T h e  successes  o f  t h e  s t a n d a r d  m o d e l  ( W e i n b e r g ,  1967; 
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Salam, 1968; Abers and Lee, 1973; Bailin, 1977) in the description of the 
electroweak interactions have motivated the application of the gauge ideas 
in the problem of the strong interactions also and indeed, this QCD 
approach has been rather successful in describing certain aspects of strong 
interaction physics (Politzer, 1974; Close, 1979; Reya, 1981). The confine- 
ment problem, however, presents an outstanding difficulty for QCD ap- 
proach. On the other hand, certain phenomenological models, e.g., string 
and bag models (Nambu, 1970; Jacob, 1974; Johnson, 1975) have provided 
considerable qualitative understanding about hadronic phenomena. Again it 
is widely believed that the QCD approach should be and actually is capable 
of producing these phenomenological descriptions in certain approxima- 
tions. Also the attempts to unify electroweak and strong interactions via 
gauge group extension (Georgi and Glashow, 1974; Mahantappa and Randa, 
1980) suffer from difficulties (generation puzzle, mass problem). 

In this work a different approach is adopted to the description of 
strong interactions and, more generally, to the unification of the basic 
interactions. We believe that the confinement problem is not of a purely 
technical nature and hence the unification of the basic interactions does not 
reduce to the problem of finding the correct gauge group. Instead, it is the 
field theory approach itself which should be appropriately generalized in 
order to overcome the above-mentioned difficulties. We base the proposed 
generalization on a unification of gauge theory with topological ideas 
abstracted from the string model. 

To make our goal concrete let us consider the basic topological aspects 
of the string model. First, the model affords a purely topological description 
of quark confinement, e.g., the string has either two ends or is closed. 
Second, the model provides a topological classification of the basic interac- 
tion vertices: Strings either merge together or, provided they are open, join 
along their ends. The idea is to generalize this approach. Instead of 
2-manifolds in the metric space M 4 w e  consider 4-manifolds in the metric 
space H = M 4 x S ,  where S is some compact space with spacelike metric. 
We interpret the four surfaces X 4 as "orbits" of 3-manifolds X 3 having 
particle interpretation. The generalization of the particle concept has im- 
mediate, highly nontrivial consequences: 

(a) It becomes possible to classify particles using the topology of the 
representative 3-manifold. A rough classification is obtained using only the 
boundary topology of X3: the number of the boundary components and 
the topology of the individual boundary component serve as classificational 
tools. The simplest working hypothesis is that different particle generations 
(Fritzsch and Minkowski, 1981) correspond to different orientable boundary 
topologies and that leptons, mesons, baryons, etc. correspond to 3-mani- 
folds with 1, 2, 3, etc. boundary components. 
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(b) The topology of H can play an important role in particle classifica- 
tion. To see this, consider the choice H =  M4X S 2 or more generally 
H = M 4 •  CP,. The point is that the space H has a nontrivial second 
homology group: H2(H ) = Z (Hilton and Wylie, 1966; Eguchi et al., 1980) 
and therefore the boundary components of a submanifold X ~ can be 
classified by their homology equivalence classes in H2(H), e.g., we can 
associate to each boundary component an integer, which we shall call 
homology charge. The total homology charge however vanishes for orienta- 
ble 3-manifolds by the very definition of the homology concept. This 
suggests an obvious explanation for the color degeneracy. One might even 
go further and argue that quarks carry nonvanishing homology charges so 
that the existence of a free quark is a topological impossibility. It turns out, 
however, that this identification is not correct although homology charge 
turns out to play an important role in hadronic dynamics. 

(c) The basic interaction vertices can be classified topologically. The 
basic vertices changing particle number (the connected sum and boundary 
connected sum vertices) are obtained by a direct generalization from the 
corresponding vertices in string model. In addition, one new vertex analo- 
gous to a 3-particle vertex in field theories is obtained. Moreover, there are 
reactions changing the internal state of the particle: either the purely 
internal topology of the representative manifold changes or the topologies 
of the boundary components change (Cabibbo mixing) or even the number 
of boundary components changes. 

The construction of the dynamics of the theory is based on the 
following principles. First, the boundary components of the 3-manifold 
should carry also dynamical elementary particle characteristics besides the 
topological ones (the ends of the string carry fermion number). A highly 
nontrivial consequence is that the spinor fields of the theory should be 
restricted on the boundary of X 4. Second, the dynamics should have the 
basic structure of the Einstein-Yang-Mills theory. Finally, only the natural 
geometric structures associated with the space H (such as metric, vielbein 
structure, and spinor structure) should be used in the construction of the 
dynamics. The basic mathematical device used to attain this goal is the 
so-called induction procedure, which makes it possible to define metric and 
Yang-Mills structures on X 4 using the geometric structures of H. 

The choice of the space H might be considered to be a highly arbitrary 
element of the theory. It turns, however, that some rather general physical 
requirements fix the choice of H essentially uniquely. First, the compactness 
requirement for the gauge group suggests strongly the decomposition H = 
V 4 • S, where V 4 denotes either Minkowski space M 4 o r  the light cone of 
M 4 (the latter alternative is favored by cosmological considerations). Sec- 
ond, the requirement that the gauge structure of the theory is that of the 
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standard model (only the quantum numbers associated with the standard 
model and with the isometrics of H and the topological characteristics are 
needed in the description of the particle spectrum) fixes the choice of S 
uniquely to S = CP2. The isometrics of CP 2 form the group SU(3) and the 
identification as color group turns out to be possible. The color degeneracy 
results from the translational degrees of freedom of CP 2, e.g., the colored 
states correspond to nontrivial partial waves of CP 2 in a somewhat gener- 
alized sense. 

Having described the basic ideas involved in the construction of the 
proposed elementary particle theory we now turn to the question: What is 
the relation between this theory and ordinary quantum field theories? The 
answer is suggested by the observation that the free field propagators 
G(x,  y )  allow a purely geometric representation as a path integral over 
paths from x to y with a certain weight associated with an individual path 
(Symanzik, 1969; Schwinger, 1957). Therefore also the Feynman diagrams 
of the interacting theory allow a geometric representation as a sum over 
one-dimensional singular manifolds (presence of vertices). This observation, 
besides revealing particularly clearly the fact that field theory describes 
interacting pointlike particles, also shows that the suggested theory is 
obtained by thickening the one-dimensional singular manifolds in space M 4 
to four-dimensional manifolds in space H or equivalently by generalizing 
the concept of the elementary particle (zero-dimensional submanifold to 
three-dimensional one). Indeed this generalization has far reaching conse- 
quences: consider only the topological classification of particles and their 
interaction vertices. 

A second natural question is: Is it possible to obtain the classical 
spacetime of general relativity as some kind of idealiTation in the proposed 
theory? It is suggested that the emergence of the classical spacetime is kind 
of a topological many-particle phenomenon. The point is that the classical 
equations of motion allow vacuum solution, which are typically surfaces 
representable as a graph for a map from V 4 to S and can have macroscopic 
size. When the dimension of H is smaller than 8, the transition particle t_) 
vacuum ~ particle g vacuum takes place with high probability in the 
presence of a vacuum solution. The resulting connected 4-surface or 
condensate, as we call it, is identified as a classical space-time. 

The plan of the paper is the following: In Section 2 the basic ideas 
are introduced. In Section 3 the topological aspects of the theory are 
considered: topological particle classification and generalization of the dual 
diagrams of string model are performed. Section 4 is devoted to the 
construction of the dynamics of the theory. In Section 5 the problems 
related to the quantization of the theory are considered and a particular 
emphasis is devoted to the study of the correspondence between the 
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ordinary field theory and the proposed one. Section 6 concerns the choice of 
H and it is shown that the choice H = V 4 • CP 2 leads essentially uniquely to 
the gauge structure of the standard model. Section 7 is devoted to the 
symmetries of the CP 2 theory. In particular, it is demonstrated how the 
color degeneracy is related to the isometries of CP 2. Section 8 deals with 
the strong interaction aspects of the theory. In Section 9 the problem of 
gravitation is discussed in the proposed theoretical framework, and Section 
10 is devoted to cosmological considerations. In Appendix A the basic 
properties of the manifold C P  2 a r e  reviewed. Appendix B concerns the 
realization of the isometries of the space H. In Appendixes C and D the 
classical aspects of the theory, in particular the solutions to the classical 
equations of motion, are studied. 

Notation. The basic ingredient of the theory is the metric space H 
having the product decomposition H =  V4•  S, where V 4 denotes either 
Minkowski space M 4 or the fight cone M 4 of Minkowski space and S some 
compact space having spacelike metric. The coordinates of H, M~4§ and S 
will be denoted by h k, rn k, and s a, respectively. For the components of the 
metric the analogous notations hat , mat, and sat will be used. 

The gamma matrices F a of the space H can be related to the flat space 
A. gamma matrices 7,4 using the so-called vielbein coefficients e a . 

r ,  = (1) 

The covariant constancy requirement for the gamma matrices determines 
the so-called vielbein connection apart from a rotation in the tangent space 
of H: 

= Dke tesy .  ,4 (2) V k  - -  A I B 

where D k denotes the usual covariant derivative and sigma matrices are 
defined as 

~.AS = 1/4[yA, yS] (3) 

N-dimensional submanifolds of H will be denoted by the symbol Xn: 
usually n = 2, 3, 4. The boundary of X n will be denoted by the symbol 3X ~. 
The following notations/definit ions will be needed: 

Coordinates ofXn: x ~. 
Metric of Xn: g~a = hkthk~h~, where the shorthand notation hk~ is 

used for the partial derivatives of the coordinate variables of H. 
Gamma matrices of X~: F~ = Fkhk,,. 
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Yang-Mills connection of Xn: A.  = Akhk,~, where A k denotes a connec- 
tion defined on H (for instance, vielbein connection). 

rk \ l~m The projection of the Riemannian connection of H to X": Ak~,~ = w,,,J" ,~ 
defines a covariant derivative for quantities which are tensors in H. In 
particular, the so-called second fundamental form H~t ~ is defined by the 
covariant derivatives of the tangent vectors hk,~: 

(4) 

The Einstein tensor of X 4 has the following representation in terms of the 
coordinate variables hk: 

G,#~ = ( g,,Vga8 _ g , ,agvV2 ) Xv ~ (5) 

where the tensor X,B is given by 

X,~# = RijkthivhtVhJ,,hkt~ 

k I), + hk,(H,~yH~ - HkY14t~ " ' .~ /  (6) 

Here R i j k l  denotes the curvature tensor of H. The corresponding representa- 
tion for the curvature scalar R = - G~ is easy to obtain from this expression. 

The trace, taken with respect to the metric of X 4, of the second 
fundamental form associated with the imbedding 6 X  4 c X 4 will be needed 
in sequel. The trace has expression 

X" = , ," 'u~'  . (7) &3 ~'a f l" t~  

Here the subscript 3 refers to the metric of the boundary and n~, denotes a 
unit vector orthogonal to 8 X  4. If the coordinates of the boundary are 
chosen so that the coordinate x ~ is constant on the boundary, the vector n~ 
is given by 

n~ = ~,,.~ ( g3 /g4  ) '/2 (8) 

2. BASIC ELEMENTS OF T H E  THEORY 

The string model (Nambu, 1970; Jacob, 1974) describes the meson as a 
string moving in Minkowski space M 4. The dynamics of the model is 
defined by the action, which is the area of the orbit of the string measured 
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in the metric induced to the 2-surface from M 4. The ends of the string are 
interpreted as quarks or rather carriers of quantum numbers associated with 
quarks and the confinement is a topological phenomenon: the string has 
either two ends or is closed. 

Many-particle states are represented as sets of strings (or rather 1- 
manifolds) in some spacelike 3-surface of M 4 and the transitions between 
different physical states are mediated by 2-manifolds having the correspond- 
ing 1-manifolds as their spacelike boundaries. There are two basic vertices 
for the transitions illustrated in Figures la and lb. Strings either merge 
together or join along the boundaries (observe that the 2-surface mediating 
the topology change is completely smooth). 

At quantum level the state is specified by a state functional in the set of 
1-surfaces in a spacelike 3-surface and the transition amplitudes are ob- 
tained by summing over all 2-surfaces having the prescribed spacelike 
boundaries attaching the phase factor exp(iS), where S is the area of the 
surface, to an individual surface. The interpretation of these diagrams as a 
generalization of the ordinary Feynmann diagrams is highly suggestive. We 
postpone the discussion about the precise form of this correspondence in the 
context of the quantization of the proposed theory. 

We conclude that the nicest features of the string model - - the  descrip- 
tion of confinement and of interact ions--are related to its nontrivial 
topological structure. On the other hand, also the basic difficulties of the 
model are met already at the topological level. Baryons cannot be described 
in any natui'al way and the different quantum numbers associated with 
quarks find no natural explanation in the model (boundary components are 
structureless points). At the dynamical level the basic difficulty is that there 
exists no convincing way to formulate the dynamics so that the ends of the 
string become charge carriers. This state of affairs suggests the generaliza- 
tion of the string model both at the topological and the dynamical level. 

~ ) 

Fig. 1. The basic vertices of the string model. (a) "Trouser vertex": ~, and (b) join along 
boundaries: ~s- 
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2.1. Generalization of the Topological Structure of String Model. The 
most obvious generalization of the string model is to increase the dimension 
of the basic dynamical entity, e.g., to make it an n-dimensional manifold of 
some metric space, not necessarily M 4. For n = 2 one obtains 2-manifolds 
with an arbitrary number of boundary components but the individual 
boundary component can have only the topology of 1-sphere S I and there is 
no hope of it describing the internal degrees of freedom of quarks topologi- 
caUy. The dimension n = 3 seems much more interesting. The topology of an 
orientable boundary component is characterized by its genus expressing the 
number of handles, which one must attach to two sphere in order to obtain 
a topologically equivalent 2-surface (Wallace, 1968, Chap. 7). 

The tentative interpretation is that different orientable boundary topoi- 
ogies correspond to different particle generations (Fritzsch and Minkowski, 
1981). We will speak shortly about generation-genus correspondence, e.g., 
(e, Pe) and (u, d )  doublets correspond to S 2 topology with g = 0, (/.t, v~,) and 
(c, s) correspond to the toms topology with g = 1, etc. Observe that the 
dimension n = 3 seems to be also maximal because for n = 4 the boundary 
components are 3-manifolds and too numerous to allow any simple physical 
interpretation. 

The obvious question is: how to choose the space H?  The requirement 
of Poincar6 invariance at laboratory scale dictates the decomposition H = 
V 4 • S, where V 4 denotes either M 4 or M~, the light cone of M 4, and S is 
some compact metric space with spacelike metric. The choice M4+ is favored 
by the fact that it leads naturally to the big bang cosmology provided the 
natural assumption that nothing enters to M4+ from "outside" is made. 
Assuming the scale of S to have the order of a typical elementary particle 
Compton length or even that of Planck length, we can expect that the 
transversal dimensions of the space H can be neglected, e.g., the space S can 
be effectively contracted to a point in the macroscopic limit. The dimen- 
sionality 3 of the observed world is assumed to reflect the dimension of the 
observers themselves, not the dimension of the space, where they "live." 

How then to fix the choice of the space S? There are two alternative 
guidelines to follow depending on whether one tries to explain color degrees 
of freedom group theoretically or topologically. If one accepts that color is 
associated with an exact symmetry of Nature a natural identification of 
SU(3)c would be as the isometry group of S. Probably the simplest choice 
would be then S = C P  2. On the other hand, one might try to find a 
topological explanation also for color. Indeed, the choice S = CP n is char- 
acterized by the fact that the second homology group of S is nontrivial and 
isomorphic to that of integers (Eguchi et al., 1980, p. 240). We can thus 
associate with each boundary component of a given 3-manifold an integer 
expressing its homology equivalence class. We call this integer homology 
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charge. By the very definition of the homology concept the sum of these 
integers however vanishes for any orientable 3-manifold (Hilton and Wylie, 
1966; Eguchi et al., 1980) 

Ehk=0 

Hence, postulating that quarks correspond to boundary components with 
homology charges h i, i = 1,2,3, so that h i :~ h/, one obtains an explanation 
for the color degeneracy. A more stringent assumption h, :~ 0 would explain 
the nonobservability of the free quark assuming that the 3-manifolds 
involved are orientable. 

It is ironic that baryons indeed turn out to correspond to 3-manifolds 
having three "valence boundary components" carrying homology charges 
( 1 , -  1,0) but that it is the group-theoretical explanation of color, which 
turns to be the correct one in the framework of the proposed theory. 

2.2. Generalization at the Dynamical Level. Concerning the formula- 
tion of the theory one has rather obvious guidelines. First, the formulation 
should be based only on the use of the natural geometric structures 
associated with the space H, such as metric, vielbein, and spinor structure. 

Second, the construction of the dynamics should be based on the 
generalization of the phenomenological string picture. In particular, the 
boundary components of the 3-manifold should be carriers of dynamical 
charges such as fermion number, spin, etc. 

Thirdly, the successes of the standard model suggest strongly the use of 
gauge concepts in the formulation of the dynamics. Actually, accepting that 
the topological explanation for the generation degeneracy and either of the 
two alternative explanations for color, the only additional quantum num- 
bers needed for the classification of the observed particles are those associ- 
ated with the standard model. Therefore, an attractive working hypothesis is 
that the dynamics should be constructed and the space H chosen so that the 
gauge structure of the standard model results. 

3. TOPOLOGICAL ASPECTS OF THE THEORY 

This section is devoted to the purely topological aspects of the theory. 
Section 3.1 classifies the topological particles, and Section 3.2, the interac- 
tion vertices, so that the question, How do the dual diagrams of string 
model generalize? is answered. 
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3.1. Topological Particle Classification. The coarsest topological par- 
ticle classification uses only the topology of the boundary of the 3-manifold. 
The boundary is specified topologically by the number of the boundary 
components N c and the topology of the individual boundary components. 

For orientable 3-manifolds only orientable boundary components are 
allowed and therefore the topology of a single boundary component is 
specified by its genus (Wallace, 1968, Chap. 7). In the nonorientable 
category also nonorientable boundary components are possible. Any non- 
orientable boundaryless 2-manifold is a connected sum of n projective 
spheres p2 (Wallace, 1968, Chap. 7) 

X 2 = p 2 : ~ p 2 5 . $ p 2  = n p 2  

The connected sum of two n manifolds is obtained by drilling holes D" to 
the composites and joining the resulting boundary components S"- i  by a 
tube D 1 X S n- 1. It is a result of the two-dimensional cobordism (Wallace, 
1968) that the boundary of any 3-manifold can be expressed in the form 

8X3 = BU( I,..) nkP 2) 
k 

where B is a disjoint union of an arbitrary number of orientable manifolds 
and in the latter disjoint union the constraint 

~ n  k = 0mod2 

is satisfied. Loosely speaking, the boundary contains an even number of 
projective spheres. 

Concerning the physical interpretation we adopt the hypothesis about 
generation genus correspondence. The physical identification of the non- 
orientable boundary topologies must be left open. Of course, the finer 
classification would take into account also the internal topology of X 3 
(Wallace, 1968). We shall adopt the working hypothesis that these degrees 
of freedom have not yet revealed themselves experimentally. 

As already found, also the topology of H can contribute to the particle 
classification. The boundary components of X 3 can be labeled by the 
elements h k of the second homology group H2(H ). By the definition of the 
homology concept (Hilton and Wylie, 1966) the total homology charge 
however vanishes for orientable 3-manifolds and is even for nonorientable 
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manifolds (in nonorientable case one cannot associate any definite sign to 
the homology charge of an individual boundary component). Although the 
attempt to explain color topologically fails, it turns out that baryonic and 
mesic quarks correspond to boundary components with homology charges 
( 1 , -  l,O) and ( I , -  1), respectively. Moreover, homology charge plays the 
role of coupling constant in planar dual diagrams. 

Some closing remarks are in order. One might consider as very unsatis- 
fying the fact that the proposed generalization of the string model suggests 
the existence of so many new particle states (generality of the "topological 
confinement condition," possibility of nonorientable manifolds, degrees of 
freedom associated with the internal topology of X 3, etc.). We, however, 
believe that the presently observed particle spectrum presents only the tip of 
an iceberg. Moreover, the semiclassical considerations suggest that the 
observed particles are exceptional in the sense that their mass scale is not 
given by Planck mass as that associated with a generic particle. 

3.2. Topological Description of Particle Reactions. We are interested in 
the "basic vertices" for the particle reactions interpreted as topology 
changes of the representative 3-manifolds and in the possible topological 
selection rules. We base our approach to an intuitive idea that a many-par- 
ticle state corresponds to a set of spacelike 3-manifolds imbedded in some 
spacelike n - 1 submanifold of H (dim H = n). In the context of quantiza- 
tion it will be seen that the imbeddability assumption is not necessary. The 
problem can be stated in more mathematical terms as follows. 

Given two 3-dimensional spacelike submanifolds Xi 3 and X/3 in (n - 1)- 
dimensional spacelike submanifolds H i and Hf, respectively, is it possible to 
find a causal (having locally Minkowskian metric) submanifold X~ having 
Xi 3 and X/3 as its spacelike boundaries so that the 4-manifold in question 
mediates the transition between initial and final states? Can we decompose 
a general transition into more elementary ones and which are the basic 
"vertices"? Are there any selection rules of topological origin? 

This kind of problem is known as cobordism problem in topology 
(Wallace, 1968; Milnor, 1965; Thorn, 1954). 

It is useful to divide the possible particle reactions to the following 
basic types: 

(a) The changes in the purely internal topology of the 3-manifold: the 
number of components of X 3 and the boundary topology remain unaltered. 

(b) The reactions changing the particle number defined as the number 
of the boundary components of X 3. 

(c) The transitions where the change in boundary topology is involved. 
Either the topology of an individual boundary component changes or even 
the number of the boundary components changes. 
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We shall proceed to describe shortly these different reaction types. 
3.2.1. Changes in Purely lnternal Topology. Since the topology of the 

boundary is unchanged in these reactions it is reasonable to restrict our- 
selves to the cobordism of the closed (boundaryless) manifolds. One obtains 
a rough idea about what is involved by observing that the problem reduces 
to a homology problem (Hilton and Wylie, 1966) if one gives up the 
requirement that the surfaces are manifolds, e.g., they can, for instance, 
intersect themselves. The selection rules for the homology problem result 
from the nontriviality of the third homology group H3(H), which is trivial, 
for example, for H = M 4 • CP n. 

Therefore the possible selection rules must result from the requirement 
that the mediating 4-surface be manifold: both the internal topology of the 
3-manifolds involved and the finite dimension of the imbedding space can 
lead to selection rules. It is however known that the so-called abstract 
cobordism (no imbedding assumed) is trivial for 3-manifolds (Wallace, 
1968; Milnor, 1965; Thom, 1954). The conclusion is that the possible 
selection rules result from the finite dimension of H and possibly from the 
requirement of causality. 

The problem of constructing the basic vertices for these changes is 
solved and we refer the reader to the literature (Wallace, 1968; Milnor, 
1965). The characteristic property of these vertices is the localizability of the 
topology change, i.e., the change happens via a 3-manifold, which is singular 
in a single point. The transition from torus to sphere topology serves as a 
simple two-dimensional illustration of this property. 

3.2.2. Reactions Changing Particle Number. As an immediate generali- 
zation of the string model vertices we obtain two kinds of vertices changing 
the component number of 3-manifold. We call these vertices connected sum 
(g) and boundary connected sum (gs) vertices, respectively. There is also a 
third vertex not obtained in dual-model context: we will refer to this vertex 
as fusion (~) vertex. 

The vertex is a generalization of the "trouser vertex" of the string 
model and is illustrated in Figure 2a for 2-manifolds. The reactants merge 
together in a point common to their interiors. Note that no selection rules 
are involved with this vertex. It can be shown that this vertex is the only 
vertex leading to a change in the component number of n-manifolds in the 
cobordism of closed n-manifolds (Wallace, 1968). This vertex makes possi- 
ble the quark exchange and recombination processes used in low P r  phe- 
nomenology of hadrons and described by the so-called planar dual diagrams 
in dual models (Chew and Rosenzweig, 1978; Veneziano, 1974, 1976). In 
these kinds of processes homologically charged boundary components re- 
arrange in combinations having vanishing total homology charges. If one 
accepts that gravitons correspond to closed 3-manifolds then the ~ vertex is 
the only possible vertex describing emission or absorption of graviton. 
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Fig. 2. (a) ~t vertex and (b) #s vertex for two-dimensional manifolds. 

The Ss vertex presents the join of two 3-manifolds along their boundary 
components (Figure 2b). There are obvious selection rules associated with 
this vertex. The internal topologies of the boundary components must be the 
same and homology charges as well as various dynamical charges must have 
opposite values. The diagrams obtained using ~ and So vertices correspond 
to the quark diagrams of the DTU approach (Veneziano, 1974, 1976). 
Observe that the homological triviality of the lepton states explains natu- 
rally why they do not participate in those strong interactions, which are 
mediated by this vertex. Figure 3a illustrates a typical quark diagram. 

The fusion of two 3-manifolds at a point common to their boundaries 
(interiors in the $ vertex) is a vertex having no counterpart in dual models. 
We will denote this vertex by the symbol ft. The fusion of two liquid 
droplets interpreted as manifolds with boundaries proceeds via this vertex. 
Clearly, the handle number and homology charge are conserved in this 
vertex. It is attractive to identify this vertex as the vertex responsible for the 
emission and absorption of gauge bosons and possible Higgs-type particles 
(observe however that we do not obtain any topological counterpart for the 
quartic vertices of gauge theories). Observe that the ability of the charged 
particle to emit photons could be simply understood as the instability of the 
charged boundary component against the decay resulting from the 
Coulombic self-repulsion of the charged boundary component. 

3.2.3. Reactions Changing Boundary Topology. The reactions changing 
the boundary topology can be described by suitably generahzing the vertices 
already found. The vertex SB for the boundary components belonging to the 
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Fig. 3. (a) A "typical" quark diagram, (b) homological depolarization via ~ vertex, (c) local 
equivalence of the ordinary and "internal" ~ vertices. 

same 3-manifold leads to the quark annihilation diagram in Figure 3a. We 
can expect this vertex to be effective for sea quarks in hadrons. The 
well-known OZI rule forbidding this kind of transition for mesons must be 
of dynamical origin (Chew and Rosenzweig, 1976, 1978; Veneziano, 1974, 
1976) (also the causality requirement for the boundary of the associated 
4-manifold might be involved). 
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The ~ vertex generalized so that the two boundary components belong 
to the same 3-manifold leads to a change in the number of boundary 
components. This vertex is illustrated in Figure 3b). Same selection rules are 
associated with this vertex as with the corresponding vertex changing the 
component number of 3-manifold. As Figure 3c illustrates these two vertices 
look locally the same. Semiclassical considerations give strong support for 
the idea that gluons correspond to "holes in hadrons" and therefore their 
interactions with quarklike boundary components must take place via the 
ordinary ~ vertex (quark and the absorbed gluon belong to separate 
hadrons) and the vertex just described ("~int") (quark and the absorbed 
gluon belong to same hadron). Figures 4a and 4b illustrate these two, locally 
equivalent, gluon quark vertices. 

Also the reactions changing the internal topology of a single boundary 
component are possible. A natural expectation is that it is this transition, 
which is involved in the various mixing phenomena [Cabibbo and neutrino 
mixing (Kobayashi and Maskawa, 1973; Bilenki and Pontecorvo, 1978)]. In 
fact this vertex can also be regarded as a special case of the ~ vertex. Now 
the regions belonging to the same boundary component merge together at a 
common point. 

The overall conclusion is that our approach might make it possible to 
imbed both the graphical rules of the dual models and those of field theories 
into a single mathematically well-defined scheme: the cobordism of four- 
dimensional manifolds in space H = V4•  C P  z. The remaining task is the 
construction of the dynamics so that we can associate transition amplitudes 
to various diagrams having a definite topological interpretation. 

a) I,) 

Fig. 4. Topological analog of gluon ("hole in hadron") exchange between two quarks in 
(a) same hadron and (b) in separate hadrons. 
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4. CONSTRUCTION OF THE DYNAMICS 

In this section the basic principles used in the construction of the 
theory will be stated, the so-called induction procedure will be described, 
and finally, the action defining the theory will be introduced. 

4.1. The Principles of the Construction. The first basic assumption used 
in the construction of the dynamics is that the boundary components of the 
3-manifold are carriers, not only of topological but also of dynamical 
elementary particle characteristics. This means that the state of a single 
boundary component is representable symbolically by a ket I g, h, Q, F, s .... ) 
(F  and s denote the fermion number and spin of the boundary component, 
respectively). This assumption is motivated mainly by the idea that quarks 
indeed correspond to the ends of the string in the ordinary string model. A 
highly nontrivial consequence of this hypothesis is that the spinors of the 
theory should be restricted to the boundary of 4-manifold. This in turn gives 
hope that the theory is free of infinities as far as spinorial degrees of 
freedom are considered, because the dimensional regularization procedure 
needs no subtractions of infinite quantities in dimensions N < 4 ('t Hooft 
and Veltman, 1973). 

The second hypothesis states that the dynamics of the theory should 
have the formal structure of the Einstein-Yang-Mills theory defined on the 
surface X 4, e.g., the bosonic part of the action is the standard 
Einstein-Yang-Mills action for some appropriate connection defined on X 4 

and the spinorial part of the action, although restricted to the boundary 
8X 4, is of the standard form. The idea that spinorial charges are surface 
charges is consistent with the fact that one can define gauge charges for 
boundary components as fluxes of the appropriate gauge field components 
through the boundary component. 

The third hypothesis states that the Einstein-Yang-Mills structure of 
X 4 should be obtained using only the natural geometric structures of the 
space H, such as metric, vielbein, and spinor structure. This hypothesis 
implies that the primary dynamical variables besides spinors are not the 
components of the Yang-Mills connection but the coordinate variables of 
H just as in the string model. Second, since the spinor structure in ~X 4 is 
defined using the spinor structure of H, the so-called internal degrees of 
freedom, appearing in somewhat ad hoc manner in the conventional theo- 
ries, find their natural place in our geometric setting. The mathematical 
device used to define the Yang-MiUs structure on X 4 is the so-called 
induction procedure obtained as a direct generalization from the corre- 
sponding procedure for the metric: one obtains Yang-Mills connection of 
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X 4 simply by projecting the connection defined on H to X 4. The same 
procedure makes it possible to define also the spinor structure on  ~ S  4. 

4.2. Induction Procedure. The basic idea of the induction procedure is 
simply stated: one only projects the various tensor quantities defined on H 
to the submanifold X n of H. In case of the metric this means the restriction 
of the line element of H to X n so that lengths are measured using the units 
of H. The component representation for the induced metric is 

gab = hklhkahkB (9) 

In order to induce the spinor structure assume that H itself allows 
spinor structure so that there exists globally defined gamma matrices 
satisfying the anticommutation relations 

(F  k, It> = 2hk, (10) 

The gamma structure on 8X 4 (or on any submanifold of H )  is defined by 
projecting thegamma matrices of H to the surface 

The obvious requirement 

~ =rkh ka  ( l l )  

(Fa, FB) = 2gab (12) 

stating that the induced gamma matrices form Clifford algebras is satisfied 
and therefore the metric structure is obtained as a by-product because (12) 
can be regarded as a definition of the metric of 8X 4. 

For the spinors the induction procedure means simply the restriction to 
the submanifold in question. The conjugation operation: xt, ~ ~ is defined 
as the corresponding operation in H. The handedness concept is gener- 
alized: the spinors are either left or right handed in the space H, not in X 4. 
Note, however, that this concept of handedness is defined only when H is 
even dimensional (Shanahan, 1978). For the spaces containing M 4 as a 
factor also the definition of the ordinary M 4 handedness is possible. In fact, 
it will turn out that the constructed theory is chirally invariant in the sense 
that there are two separately conserved fermion numbers corresponding to 
the two possible H chiralities. Physically these correspond to the conserved 
lepton and baryon numbers. An important feature of the induced spinor 
structure is that it is defined for all topologies of the submanifold unlike the 
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ordinary spinor structure, which fails to be defined, for instance, for 
nonorientable manifolds (Lichnerowicz, 1968). The spinors have 2 dimn/2 
components when H has even dimension. 

Assuming that the quantities A k are components of a Yang-Mills 
connection defined on H, the induced connection on submanifold X" is 
defined in the manner already obvious: 

A,~=Akhk~ (13) 

The most promising candidate for a connection to be induced is the vielbein 
connection of H, which is determined modulo a position-dependent rotation 
in the tangent space of H from the requirement that the gamma matrices of 
H are covariantly constant matrices (Lichnerowicz, 1968). The vielbein 
connection has the representation 

A k = A k ' " E , . .  (14a) 

Ak"" = 1 /4 (F  m, D"Fk) (14b) 

where D ~ denotes the covariant derivative with respect to the usual Rieman- 
nian connection of H and the spin matrices are defined as the commutators 
of the gamma matrices of H (N3). The curvature form of the vielbein 
connection is essentially the curvature tensor of H 

Fkl = 1 / 2 R k t m . Y , "  (14C) 

Therefore the induced Yang-Mills field is the projection of the curvature 
tensor of H to X 4. 

The gauge group associated with the vielbein connection is for the 
generic H with one time like direction the noncompact group SO(n  - 1, 1) 
but reduces to the group SO(n - 4 )  for the product decomposition H = V 4 

• S, where one has either V 4=  M 4 or V 4 =  M4+. Hence the pathologies 
associated with the noncompact gauge groups afford the 'reason why' for 
the otherwise rather ad hoc choice H = V 4 x S. 

It should be noted that the physically most interesting choice S = CP 2 
doesn't allow spinor structure in the ordinary sense. However, a respectable 
spinor structure is obtained by coupling the spinor field to a U(1) gauge 
potential naturally associated with the geometry of CP 2. Therefore an 
additional U(1) factor is introduced to the gauge group, the presence of 
which turns out to be necessary for the correctness of the gauge coupling 
structure. 
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4.3. Action Principle. Using the induced structures in X 4 and in its 
boundary we define the dynamics of the theory by the action 

S=Sm+Sg r (14d) 

where the matter part S m and the gravitational part Sg r of the action are 
given by the expressions 

) 1 / 2  S,, ,=-(1/4gZ)fxWr(F"OF,,t~)(-g 4 d4x 

and 

+ ifsx - & r - ) q , ( g 3 )  '/2 d3x +g.c. (15) 

S g  r = _ ( l /16~G) f~xR ( -  ga) '/z a4x 

- (1/18~rG)fsxx" ( - g 3 ) l / 2 d 3 x  (16) 

In equation (15) F~0 denotes the projection of the curvature form of the 
connection of H to X 4. The spinor variables are regarded as Grassmann 
valued so that 'It and ,t, are independent variables. The symbol g.c. denotes 
the quantity obtained by performing complex and Grassmannian conjuga- 
tion for the spinorial quantity appearing in (15). The chiral invariance of the 
action makes it possible to apply the handedness condition to the spinor 
variables inducing a rather obvious change in the form of the action. 

In equation (16) the symbol R denotes the curvature scalar of X 4 and 
the quantity X n is the trace of the second fundamental form for the 
imbedding of 6X 4 into X 4 [see equations (4) and (7) for the definition of the 
quantity X"]. The boundary part is added in order to make S~r additive in 
boundary-connected sum operation for 4-manifolds (Eguchi et al., 1980, p. 
36). It should be stressed that concerning the precise form of the boundary 
part of the action, the situation is not completely settled. For instance, the 
addition of the term proportional to the "instanton density" Tr(F~t~F*a) to 
the interior part of the action density introduces a change in the boundary 
part of the action. 

The action contains three constants: the gauge coupling g, the "funda- 
mental length," say, R, given by the scale associated with the compact space 
S and gravitational constant G. The study of the classical aspects of S = CP 2 
theory reveals that the addition of Sg x to the action is necessary: otherwise 
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one would obtain a value for the gravitational constant differing by a factor 
1038 from Newton's constant. Furthermore, the scale of S is given by 
Planck's length. 

In this context some remarks concerning the concept of action, as it is 
used in our theory on the one hand in the ordinary field theory on the other 
hand, are in order. First, the action defining the ordinary quantum field 
theory should correspond in our framework to an effective action giving a 
convenient shorthand description for some of the lowest-order Green's 
functions (defined as appropriate generalizations of the Green's functions of 
the ordinary field theory) such as propagators and vertices, which, as we 
hope, can be used to generate at least approximatively the higher n-point 
functions appearing in the theory using appropriate "Feynmann rules." 
Second, the fact that the action defining our theory has the same form as the 
action of Einstein-Yang-Mills theory with constraints, can be understood 
as a consequence of the gauge invariance, which dictates to a high degree 
the form of the action, whether effective or not. Finally, the correctness of 
the action can be tested by studying the resulting classical equations of 
motion, which should provide reasonable models for elementary particles 
(Appendixes C and D). 

5. QUANTIZATION OF THE THEORY 

In this section some problems related to the formulation of the quan- 
tized theory are discussed. Section 5.1 gives the correspondenc~ principle 
governing the transition from quantum field theory (QFT) to a more general 
theoretical framework having the suggested theory (to which we shall refer 
as quantum geometrodynamics, or QGD, hereafter) as a particular repre- 
sentative. In Section 5.2 the basic ideas of the suggested quantization 
procedure will be spelled out. In Sections 5.3 and 5.4 we consider the 
algebra of the so-called one-particle-state functionals and the definition of 
the transition amplitudes and probabilities, respectively. 

5.1. Transition from QFT to QGD. A necessary prerequisite for the 
formulation of the quantized theory is a correspondence principle governing 
the transition from QFT to QGD. The key to this correspondence, we think, 
is provided by the well-known geometric representation for the propagators 
of the free scalar field theory (Symanzik, 1969; Schwinger, 1957) defined by 
the action 

s - -  (17) 

where ~ is understood as an infinite-component vector having the space-time 
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point as index and summation over space-time points (corresponding to 
integration in the continuum limit) is performed. The matrix F has in the 
Euclidian lattice the representation 

F~,y=C~_~(Sx, y+l.t+Sx, y-tt)=D/rn2A2+l (18) 
/x 

where the sum is performed over the nearest neighbors of the lattice point, [] 
denotes the d'Alambert operator, and A is the lattice spacing. 

The propagator G(x, y) is defined as the inverse of the matrix 1 -  F, 

G(x, y) = (1-  E (r)x  v (19) 
N 

This expression can be interpreted as a sum over all possible paths leading 
from x to y with a weight factor proportional to the exponential of the path 
length attached to an individual path 

E FJN~, = E[exp(lnCN)]-fD'~exp[-kL('r)] (20) 
N 

where the latter summation is performed over all paths with fixed path 
length of N units and in the symbolic integral notation L denotes the path 
length. The representation suggests the interpretation of the field theory 
propagator associated with the pointlike particle described by a relativistic 
action proportional to the invariant path length. 

Since the n point functions of an interacting scalar field theory decom- 
pose into propagators and vertices, we conclude that they have a purely 
geometric representation as sums over one-dimensional singular (because of 
the presence of the vertices) manifolds having the points x t . . . . .  x n as 
boundary. This result holds true also for the spinor propagator: the pres- 
ence of spin introduces only some additional factors besides the exponential 
factor to the functional integrand. 

Preceding observations suggest that QGD should be regarded as a 
representative for a class of theories obtained by generalizing the field 
theory so that the manifolds appearing in the defining functional integrals 
are thickened from one- to n-dimensional manifolds and the theory is 
defined by specifying the factor attached to an individual "pa th"  X n 
contributing to the functional integral (one might even argue that the 
singularities of the field theories might reflect the singular nature if the 
l-manifolds contribute to the defining functional integral). 
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The most straightforward test for the proposed correspondence princi- 
ple is to look at what kind of a theory results, when the 4-manifolds 
contributing to the functional integral are contracted to one-dimensional 
manifolds. Clearly, the bosonic part of the action vanishes for the theory 
obtained using this, perhaps too naive, limiting procedure. If the bosonic 
action is taken to be proportional to the 4-volume of X 4, the situation of 
course changes: the limiting theory should describe scalar particles interact- 
ing with fermion. We think however that this limiting procedure is too 
rough, when applied to the YM-like theory and therefore fails to reveal the 
bosonic spectrum of the limiting theory. 

For the spinor propagators this kind of limiting procedure is well 
defined and obviously one obtains for the fermion propagator the following 
expression: 

G(x, y) = fexp[is(v)] (x) (y) DvD~D~ (21a) 

where S is the one-dimensional counterpart of the spinorial action defining 
the theory. Since the induced gauge field on the world line is pure gauge, we 
can by a suitable gauge transformation eliminate it all together and thus 
effectively contract S to a point. Therefore the summation in (21) is 
understood to be done over the paths of m 4. Taking the path length as a 
coordinate variable for the path contributing to the functional integral one 
obtains for the fermionic propagator the expression 

G-'(x, y)=CYk( OomkO0 + OZmk)=l + F (21b) 

Going to the Euclidian lattice and taking the coordinate condition into 
account one obtains for the derivative part of 1 + F 

C'Yk(OOmkOO)X,y=~_.(Sx, y+It--Sx, y--p.) (21C) 
# 

e.g., the same result as obtained in the discretization of the ordinary Dirac 
operator. There is however an additional term proportional to the curvature 
of the path having no field-theoretic counterpart. The interpretation of this 
additional term as a Thomas precision term resulting from accelerated 
motion might be possible (Jackson, 1970). 

It should be noticed, that the pointlike limit of QGD makes sense only 
when the 4-manifolds contributing significantly to the transition amplitude 
in question have a definite upper bound for their scale. The fact that one 
cannot associate a definite-length scale to massless gauge bosons suggest an 
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explanation for the failure of the pointlike limit for them. Furthermore, 
theory allows classical vacuum solutions which can have an arbitrary size, 
which suggests that also the limit when the size of 4-manifolds approaches 
infinity is physically relevant. We will postpone the discussion of this limit 
to the section where gravitation is discussed. 

5.2. Heuristics of the Quantization. On basis of the preceding consider- 
ations we base the quantization on the idea that QQD is obtained from the 
ordinary field theory by thickening the lines of Feynman diagrams to 
4-manifolds, and in concordance with this, particles correspond to 3-mani- 
folds in H. 

With this in mind it is natural to generalize the Green's functions 
G ( x  1 . . . . .  x , )  of the ordinary field theory to Green's functionals A[o 1 . . . . .  on] 
defined by the functional integral expression 

A[o3 i . . . . .  o'3 n } A[i . . . . . .  ] = Nf~a4 = o3exp(iS[ o4] Do 4 (22) 

where we have used the shorthand notation o n to denote the manifold X n 
with a prescribed spinor configuration on its boundary and the symbol Do 4 
to denote the integration measure D X  4 D ' , t 'D~ .  The normalization factor N 
is defined as the inverse of the integral appearing in (22) with 804 empty (N 
divides away the vacuum bubbles). The functional integral is performed 
over all four surfaces and spinor configuration with prescribed spacelike 
boundary and associated spinor configuration. Since the spinorial variables 
are Grassmann valued the Green's functional as such is a rather formal 
obj ect. 

As in the ordinary field theory, the quantities of physical interest are 
obtained by contracting the amplitude A with the quantities, which we call 
one-particle-state functionals and which correspond to the Fourier compo- 
nents of the "classical fiolds" in field theory: 

A " '  ..... . . . . .  < , : ]  (23) 

(here the label Pk denotes momentum and other quantum numbers). Be- 
cause the one-particle-state functionals in general depend on spinor vari- 
ables they are in general Grassmann valued. The transition amplitudes are, 
however, complex valued because the functional integral over the 
Grassmann variables gives an ordinary complex number, when performed 
according to the usual rules of Grassmann integration (Berezin, 1966). 
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5.3. The Algebra of State Functionals. The central quantities in the 
quantized theory are one-particle-state functionals, which should have at 
least the following basic properties. 

(a) They are functionals of spacelike submanifolds X 3 of H and spinor 
configurations defined on their boundaries and are nonvanishing only for 
connected 3-manifolds. 

(b) They transform irreducibly under the symmetries of the theory, e.g., 
they have for instance a definite momentum, spin, and SU(3) quantum 
numbers. 

(c) It should be possible to choose the basis for the state functionals so 
that the propagators A a'~ (where the indices refer to various quantum 
numbers associated with particles) are diagonal. 

(d) One-particle-state functionals should correspond to the Fourier 
components of the ordinary fields when the 3-surface appearing as the 
argument of the functional has a small size in the scale defined by the 
wavelength associated with the functional. 

Some remarks concerning the above-listed properties are in order. 
First, the diagonalizability property (c), which provides a nice way to define 
one-particle states, is not self-evident. Observe, however, that in the Euclidian 
formulation (which should be obtainable in a way analogous to that of the 
ordinary field theories) the propagator matrix is formally Hermitian and 
therefore is expected to be diagonalizable. So, the diagonalizability of the 
propagator matrix is probably ensured provided the analytic continuation to 
the Minkowskian regime preserves the diagonal form of the Euclidian 
propagator. Second, no separate scalar product for the state functionals is 
needed since one can cancel the dependence of the transition amplitudes on 
the normalization of one-particle-state functionals by multiplying the "legs" 
in n-point functionals by the quantity G- t/2, where G denotes the propaga- 
tor matrix. Finally, the state functionals generate in a natural way 
Grassmann algebra structure. The product of the state functionals provides 
an algebraic description for forming the disjoint union o I U o z. 

Next we turn to the construction of the one-particle-state. A rather 
natural basis consists of the separable functionals f~ = a • r ,  where the 
functionals a and fl depend only on X 3 and on spinor configuration, 
respectively. In principle, also the state functionals associating a fermion 
number larger than 1 to an individual boundary component are possible. 
The following example illustrates what the state functionals should look 
like: 

f~ = fo3exp( ip. m ) Y"X(  g3 )t/2 d 3x (24) 

Here the functions Y" form a complete basis in the space S being most 
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naturally the "spherical harmonics" of S transforming irreducibly under the 
isometries of S. Their appearance demonstrates the degrees of freedom 
associated with the additional dimensions of S. As it turns out they give rise 
to the color degrees of freedom. For X--1 one obtains a state functional 
describing a scalar particle. The choice X = g'~amk,~rn~ - rn kl together with 
assumption that the state functional is restricted to the surfaces with the S 3 
topology leads to a candidate for a graviton state functional. Observe the 
possibility to interpret this state functional as a generalization of the Fourier 
component of a gravitational field understood as a departure of the metric 
from the flat one. The choice X =  A,~mk~g ~l~ leads to a candidate for the 
interior part of a gauge boson state functional. The boundary part of the 
state functional is expected to contain a term quadratic in the spinor field. 

As a second example we take the description of quark states. The 
functional 

f~ = f(g, h)exp(ip" m ) ~ X  p' r( _ g2)1/2 d 2x (25) 

where r is a label describing the spin, charge, and color quantum numbers of 
the quarklike spinor X. The label (g, h) tells that the state functional is 
restricted to the boundary components with prescribed genus and homology 
charge. We expect that the boundary part of the baryonic state functional 
can be obtained to a good approximation from products of the state 
functionals of form (25) by completely symmetrizing both in spin flavor 
labels and in homology charge label and by performing a complete anti- 
symmetrization in color label. 

5.4. Transition Amplitudes and Probabilities. Clearly the Green's func- 
tions A p' ..... Po defined via the functional integral expression (22) should 
contain the physical prediction of the theory. The dependence of these 
quantities on the normalization of the one-particle-state functionals can be 
canceled by multiplying with the matrix A - 1/2 _ B, where A is the matrix 
formed by the one-particle propagators, which is expected to be diagonaliz- 
able and which certainly is diagonal with this respect to four-momentum 
indices. So, for the states 1-Ikf~ pk and l-lkf~ qk with positive and negative 
energies, respectively, we define the transition amplitude as 

T ( p  I , p , - - , q~ , . .  q,,,)=]"-[BPk'Skl"-[Bqk'rkA (26) 
, . . . .  ,~ . I .  Jl. .1. . t  r I , . . .  ~ . sn l  

k k 

This amplitude is proportional to a momentum-conserving delta function 



600 Pitk~inen 

and can be regarded as a transition amplitude from the state H a  p* to the 
state I-I~2 *q~. 

The square of the T-matrix element has interpretation as an unre- 
normalized transition probability. The normalization is found by dividing 
with the quantity X. = Y'.rlT~rl 2 to obtain 

p r o - .  = IT . . . .  12/g~ (27) 

It should be emphasized that the proposed quantization procedure 
differs from the conventional one in certain respects. First, we do not 
assume sharp mass spectrum for the physical states. Instead the probability 
P " - Q  serves as a measure for the lifetime of a single- (and also many-)par- 
ticle state and thus for observability of the state. Second, the unitarity of the 
T matrix or any matrix simply related to it, is by no means necessary for the 
physical interpretation of the theory in the proposed sense. Of course, it is 
an important problem to find whether there exists a counterpart for the 
unitary S matrix in the proposed theory. 

6. CHOICE OF THE SPACE H. 

In this section the choice of the space H is considered. In Section 6.1 
we will consider that the general requirements H should satisfy and in 
Section 6.2 we will show that the choice H = V 4 • CP 2 indeed satisfies them. 

6.1. Why the choice  H --- V 4 X CP2? The arbitrariness associated with 
the choice of the space H seems to give a rather ad hoc nature for the 
proposed elementary particle model. Quite surprisingly, it appears that some 
rather general physical inputs make the choice of H essentially unique. 

First, the decomposition into a product H = V 4 • CP2, where one has 
either V 4=  M 4 or V 4=  M 4, is necessary in order to obtain a compact 
gauge group. Secondly, the suggested explanations for the color degeneracy 
(group-theoretic and topological) make the spaces CP n appear as promising 
candidates for the space S. Of course, these spaces are favored also, because 
they are highly symmetric and allow additional structures (K~ihler structure 
and associated symplectic structure) (Eguchi et al., 1980). 

Thirdly, accepting the suggested topological explanation for the genera- 
tion degeneracy, one can conclude that the only additional quantum num- 
bers needed for the classification of the known elementary particles are 
those appearing in the standard model for electroweak interactions. Also 
accepting the existence of the right-handed neutrinos, one is led to conclude 
that the spinors of the space H should have 16 components corresponding 
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to two weak isospin degrees of freedom or integer-charged leptons and 
fractionally charged quarks. Therefore one could have either dim S = 4 or 
dim S = 6 provided one imposes a chirality condition on the spinors in the 
latter case. 

Finally, when S is four dimensional the gauge group associated with 
the vierbein connection decomposes into a product S O ( 4 ) = S U ( 2 ) L x  
SU(2),, where the factors act nontrivially only on the spinors with definite 
S chirality specified by the label 1, r. Obviously the identification of the 
S U(2)L as the group S U(2)L of the standard model is suggestive and 
therefore the space S = CP 2 having S U ( 3 ) / Z  3 as its isometry group appears 
to be a particularly promising candidate. There are, however, two problems. 
First, one can wonder where is the U(1) factor of the standard gauge group 
SU(2)L • U(1). Second, CP2 does not allow spinor structure (Gibbons and 
Pope, 1978)! 

It is remarkable that the geometric structure of CP 2 provides a nice 
solution to both of these problems. The point is that CP2 is a Kahler 
manifold (Gibbons and Pope, 1978; Eguchi etal., 1980) and therefore 
allows a closed, covariantly constant 2-form J, which is half-integer valued 
and defines symplectic structure in CP2. Because 2 J  is integer valued and 
covariantly constant, it satisfies Maxwells equations and is interpreted as a 
U(1) gauge field associated with a magnetic monopole of unit charge. In 
particular, there is a U(1) connection B so that locally the equation 

2J  = dB (28) 

is satisfied. By coupling an odd multiple of B / 2  (which itself defines only a 
gauge potential but not a connection) one obtains a respectable spinor 
structure as shown by Hawking (Hawking and Pope, 1978). More generally, 
in the case H = M 4 •  CP 2 it is possible to couple the components of the 
spinor field with different H chiralities ( + )  independently to B/2 ,  e.g., the 
odd integers n+ and n_ need not be same. The identification of 't'+ and ' t "  
as quark- and leptonlike spinors, respectively, gives us a hope of obtaining 
correct electroweak couplings for the fundamental fermion fields. Of course, 
the introduction of the gauge potential B / 2  is hoped to introduce the 
missing U(1) factor to the gauge group. So, we are in the position to state 
the exciting question: Do we obtain the gauge structure characteristic to the 
standard model with a suitable choice of the integers n+ and n_ and does 
the isometry group of C P  2 have the interpretation as color group? 

6.2. Gauge Structure of the CP 2 Theory. In the preceding section it was 
found that the dimension of CP 2 and the intricacies associated with its 
spinor structure single it out as a unique candidate for the space S. In this 
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section we show that the associated gauge group indeed reduces to that of 
the standard model, in particular, the right-handed neutrinos decouple 
totally from gauge interactions. 

We begin by observing that the space H allows us to define three 
different chiralities for the spinors. First, there is the chirality defined in H: 
il'gXIt + = ___x I t+ .  We will interpret xI,+ and ,t'_ as quark- and leptonlike 
spinor degrees of freedom. This identification is motivated by the fact that 
the action is chirally symmetric in the sense that one can associate con- 
served fermion numbers to both chiralities. Secondly, we can define C P  2 

chirality: 1 • yS~/(r)=(+~)X~l(r). Finally, we can speak of M 4 chirality or 
rather handedness defines as iy 5 • IXrgL(n)=(+_)~ItL(g). 

It is a rather trivial but important observation that for a fixed H 
chirality there is complete correlation between C P  2 and M 4 chiralities: for 
xt'+ and 'I'_ these chiralities are the same and opposite, respectively. Hence, 
identifying xI'+ as the quark field q_ and q'_ as the charge conjugate L C of 
the lepton field, one can perform the identification SO(4)=  SU(2)t " • 
S U ( 2 ) n  for the vierbein part of the gauge group. 

We now turn to the task of showing that the couplings of the standard 
model result from the covariant derivative defined via the spinor connection 

A = V + B / 2 ( n  + 1 + + n_ 1 _ ) (29a) 

where V and B denote the vierbein and K~aler connections, respectively, 
and 1 § and 1 _ project to the quark- and leptonlike subspaces, respectively. 
The integers n+ and n_ are odd from the requirement of a respectable 
spinor structure. The explicit representations for V and B are' (Eguchi et al., 
1980, p. 257) 

V =  Va B Y/~ B (29b) 

where the quantities V a B are given by 

and 

V01 -= __ 1:23 = __ e t / r  

V01 = _ 1:13 = _ e 2 / r  

Vo3 --- ( r  -- 1 / r ) e  3 

I l l  = (2r  + 1 / r ) e  3 (29C) 

B = 2r e  3 (30) 

respectively. For the definition of the coordinate variables and the vierbein 
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forms e k we refer to Appendix A, where the basic facts about the geometry 
of CP 2 are reviewed. 

Identifying Y'03 and ~12 as the diagonal Lie algebra generators for 
SO(4) one finds that the charged part of the connection is given by 

where we have defined 

Ach = V23I ~ + V13 I2 (31) 

/i1 = (Y'01 -- Y ' 2 3 ) / 2  

/ 2  = (~02  -- 1~13)/2  (32) 

and is indeed purely left handed so that we can perform the identifications 

W +(-) = 2 ' / 2 / r ( e  I 4- e 2) (33) 

where W +(-) denotes intermediate charged vector boson (of course it should 
be noticed that it is the projection of W +(-) to the 4-surface which 
represents the physical gauge boson field). 

Next we turn to the identification of the gauge bosons 3' and Z ~ as 
appropriate linear combinations of the functionally independent quantities 
X = re 3 and Y= e 3 / r  appearing in the neutral part of the connection. The 
identification is found by imposing two rather obvious requirements. First, 
photons couple purely vectorially, and second, the "free" part of the YM 
action, when expressed in terms of ~, and Z ~ should not contain nondiago- 
nal terms of form ~,Z ~ 

Having these objectives in mind we define 

,30, 

imposing the normalization condition 

a d - b c = l  (35) 

The physical fields y and Z ~ will be related to "g and Z ~ via simple 
normalizations. For the neutral part of the connection one obtains 

A . c = [ ( c + d ) 2 Y . o 3 + ( 2 d - c ) 2 ] E , 2 + d ( n + l + + n  1 )]',7 

+ [ - ( a + b ) 2 Y . 0 3 + ( a - 2 b ) 2 E l z - b ( n + l + + n _ l _ ) ] Z  ~ (36) 

Identifying El2 and Y'03 = ")t5~]12 as vectorially and axially coupled Lie 
algebra generators, respectively, the requirement that photons couple vec- 



604 Pitkiinen 

torially leads to the condition 

c + d = 0 (37) 

Combining this with (36) one obtains for the photonic part of Ant 

AVnc = 7(6Z,2 + n+l+ + n _ l _ ) / 6  (38) 

where we have defined 

y = 6d'7 (39) 

Already at this stage the electromagnetic couplings can be read from (38) 
and indeed the choice n+ = 1 and n_ = 3 leads to the fractional and integer 
charge spectrum for the quarks and leptons, respectively. 

To fix the remaining parameters a and b we apply the diagonality 
condition to the free (or Maxwellian) part of the YM action, e.g., we pose 
the requirement that no terms of form ~--~0 appear. The free part of the 
action density in terms of the original fields reads 

LF= _ (1/4g2)16[ ( dVo3)2 + (dV12)2 + ( dB/2)2 + 2(dV01)2 + 2( dVo2) 2] 

(40) 

where the shorthand notation X- Y for the tensor contraction of type X ~ Yo~ 
is used. Numerical factors result from various traces, such as Tr(Y.u 2) = 4 
and Tr(1 +~_)) = 8. Expressing L F in terms of the physical fields one obtains 

LF= -4/gZ[13d2( dy )2 + (9b 2 +2a  2 - 2ab )( dZ~ 2 

+(6a-20b)dy .  dZ~ (41) 

The coefficient of the nondiagonal term vanishes provided one has 

a = 10b/3 (42) 

This equation, when combined with the normalization condition (24) leads 
to the result 

(a  b ) =  (10/13d_d 3/d3d)  (43) 

For the neutral part of the connection one obtains 

Anc= 7Qem + Z~ I3 -sinZOwQem) (44) 
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where we have defined 

I3 = (Y'I2 -- Y'03)/2 

Z o = 4 Z ~  

sin20 w = 9/26 (45) 

From these expressions we conclude that same coupling structure 
results as in the standard model. Some remarks concerning the coupling 
structure are in order. First, the right-handed neutrino decouples completely 
from the interactions mediated by the gauge bosons (as can be seen directly 
also from the original representation of the covariant derivative). Since this 
decoupling phenomenon is not generic we can regard the experimental 
absence of the right-handed neutrinos as a unique signature singling out C P  2 

among the other alternatives. Secondly, the value sinE0w = 9/26 [to be 
compared with the value 9/24 of the grand unifications (Georgi and 
Glashow, 1974; Mahantappa and Randa, 1980)] is acceptable provided we 
identify it as the unrenormalized value of the quantity. The bare value of the 
Weinberg angle should reveal itself at high energies, perhaps of order of 
Planck mass, as suggested by the grand unification schemes. 

7. SYMMETRIES OF THE THEORY 

In this section the symmetries of the theory will be considered. Section 
7.1 is devoted to the problem of realizing the isometries of H as spinor 
transformations. Section 7.2 deals with the realization of discrete symme- 
tries and some comments concerning the chiral invariance in a generalized 
sense are represented. In Section 7.3 a geometric analog for the Higgs 
mechanism is proposed. 

7.1. Isometries of H. A quite natural expectation is that the isometries 
of the space H should be symmetries of the theory. However, the realization 
of CP 2 isometries as spinor transformations so that the spinor part of the 
action remains invariant is not quite straightforward. We shall approach the 
problem only from the infinitesimal point of view. So let h k-'', h k +  e j  k 

define the infinitesimal isometry. The first result needed and shown to be 
true in Appendix B is specific to CP,,. 

L e m m a .  The isometries of C P  n are representable as Hamiltonian 
flows with respect to the symplectic form defined by the KNder 
form J ( J k l J t  r = -- 8kr). The infinitesimal generators have the rep- 
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resentation 

jk = jktot H (46) 

where H is the Hamiltonian associated with the flow. 

The following theorem is proved in Appendix B: 

Theorem. Let H = M 4 X CP 2 and define the covariant derivative in 
X 4 using the induced spinor connection. Then the quantity ~F~D~xt ' 
is invariant under the isometries of H realized according to 

8 ~ = i e [ � 8 8  +31 )]~ (47) 

The transformation formula (27) has a simple geometric interpretation. 
The isometry is interpreted as flow and the spinor field is parallel translated 
along the flow lines: besides the usual rotation [the first term in (47)] the 
spinor field suffers a transformation [the second term in (47)] which has its 
origin on the nontrivial curvature properties of the space H. The last term is 
obviously absent when H has ordinary spinor structure. An important 
general feature of this representation is that the infinitesimal isometrics are 
represented as infinitesimal gauge transformations. This means that the 
representation is not integrable in the ordinary sense but one has a represen- 
tation modulo gauge transformation, which can be thought of as a generali- 
zation of the ordinary projective representation, say, for the rotation group 
SO(3). A remarkable feature of the representation is that only a single 
Abelian subgroup is representable in the ordinary sense. 

In order to elucidate the physical role of the SU(3) isometrics it is 
useful to study the action of the isometrics using complex coordinates 
(~l, ~2) for CP2 defined in Appendix A. The action of SU(3) on these 
coordinates can be deduced from its action on coordinate variables z k, 
k = 1,2,3 of C 3 (ordinary matrix multiplication). Clearly the action is 
nonlinear, the maximal linearly realized subgroup being SU(2)x U(1) repre- 
sentable as matrices of the form 

0 ) 
0 det(U- 1 ) 

[remember that ((l, (2)-" ( z l / /Z3 ,  z2 / / z3 ) ]  �9 Observe that the center of SU(3) 
is represented trivially, which implies that the CP 2 spherical harmonics must 
have triality zero. 

How then to construct the spherical harmonics of CP2? The construc- 
tion is easily performed using the triplets ( fk,  k = 1,2,3) and (fk),  where 
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the functions fk are defined as 

fk = ~k/( 1 + r2) ' /2  (48) 

where one has ~3 = 1 and the phase factor U defined as 

u = ~5'~52/I~5'~5z I (49) 

The triplets behave like SU(3) triplets 3 and 3 apart from carrying an 
anomalous hypercharge YA = - 2 / 3  and YA = 2/3, respectively. The phase 
factor carries an anomalous hypercharge YA = -2 .  One can construct irre- 
ducible representations of SU(3) by forming products of the basic triplets 
and by canceling the anomalous hypercharge by a suitable power of the 
phase factor U. This corresponds to the construction of the completely 
symmetrized product (3~' • carrying the anomalous hypercharge YA = 
(n - m)2/3 and the compensation of YA using the phase factor U (m-")/3 
The triality zero rule follows from the one valuedness requirement for the 
phase factor. It should be emphasized, however, that one obtains also 
representations, which differ from triality nonzero representations by the 
associated anomalous hypercharge. 

The infinitesimal action of the subgroup SU(2)x U(1) on the compo- 
nents of the connection is found directly from the representation of the 
vierbein in complex coordinates (Appendix A). Rather surprisingly, the 
connection and therefore also the spinor field are invariant under the action 
of the group SU(2). Under the group U(1) the field quantities transform as 
objects having an anomalous hypercharge YA = 2Qe,,- 

The fact that one can associate definite anomalous hypercharges both 
with the field quantities and with the triplets ( f k )  and (fk)  and the phase 
factor U suggests an obvious generalization of the ordinary CP 2 partial wave 
analysis. One simply associates with the field quantity having YA = 2Qem a 
generalized partial wave carrying an opposite anomalous hypercharge so 
that an irreducible multiplet results. As a consequence, leptons and gauge 
bosons necessarily correspond to the triality zero partial waves and for 
quarks only the partial waves with triality t = 1,2 are allowed. 

On basis of the observations just made the identification of SU(3) as 
color group seems compelling. Moreover, the fact that the color degrees of 
freedom correspond to CP 2 translational degrees of freedom suggests a 
surprisingly simple explanation for color confinement or, more generally, 
for the experimental absence of the colored states. The point is that the scale 
of CP 2 turns out to be given by Planck length and therefore the uncertainty 
principle suggests a mass scale defined by Planck mass for the colored 
states. Also the fact that different members of the electroweak multiplets 
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carry different anomalous hypercharges suggests that "symmetry breaking" 
indeed happens (in fact, the standard group is not a symmetry group in the 
proposed theory). 

7.2. Discrete Symmetries and Generalized Chiral Invariance. We base 
our approach to the discrete symmetries C, P, and T on the following 
requirements. First, the symmetries should be realized as purely geometric 
transformations. Second, the transformation properties of the fieldlike vari- 
ables should be essentially the same as in the conventional field theories 
(Bjrrken and Drell, 1965). Finally, the assumption about the Grassmann 
valuedness of the spinor field is made so that ,t, and ~ =  ~ + F  ~ are 
regarded as independent dynamical variables. 

The realization of the reflection P corresponding to the intuitive picture 
about parity breaking is 

mk ~ p ( m  ~) 

,/, __, yo • ~,o, I, (50)  

in the representation chosen for the gamma matrices (Appendix A). Indeed, 
the gauge bosons W and Z ~ break the symmetry because they do not 
commute with the matrix 7 ~  7 ~ It is amusing that for n+ = n_ parity 
would be an exact symmetry, but now realized according to xt'---, 7 ~  1~I' 
and transforming leptons and quarks to each other. 

In case of time reflection the above-mentioned principles lead to 
nontrivial consequences already in the conventional theory. The purely 
geometric transformation formula for the U(1) connection is A o ( x ) ~  
- A o ( T x  ), A , ( x )  ~ A i ( T x  ) and is in variance with the physical transforma- 
tion formula differing from the purely geometric one by an overall sign. 
Therefore the T of the physicist cannot reduce geometrically to a pure time 
reflection in M 4. The naive guess that also a complex conjugation in CP 2 is 
associated with the T transformation turns out to be correct. One can verify 
by a direct calculation that the action is invariant under T realized accord- 
ing to 

rn k ~ T(  m ~ ) 

e-,(e)* 

x I, ~ ~/1y3 • IN* (51) 

where the symbol * denotes complex conjugation. 
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The operation bearing closest resemblance to the ordinary charge 
conjugation corresponds geometrically to complex conjugation in CP2: 

Concerning the composite transformations one can conclude that CP and 
CPT are exact symmetries of the action as expected for the choice V 4 = M 4. 

The observed CP breaking (Lee, 1979; Weinberg, 1976) might result from 
the noninvariance of vacuum state under CP. Indeed, the classical equations 
of motion allow vacuum solutions, which in general are nonmvariant under 
CP (Appendix D). 

The theory allows as symmetries also the transformations 

xI,---,exp(iaX)'t' (53) 

where the quantity X is a linear combination of unit matrix 1 and the matrix 
F 9. Thus we can speak about chiral invariance in a generalized sense. It is 
evident that the corresponding conserved currents give rise to the separately 
conserved lepton and baryon numbers. As a consequence the proton is 
absolutely stable against spontaneous decay provided the quarks are mas- 
sive enough irrespective of confinement mechanism. Of course, we do not 
have the ordinary chiral invariance producing troubles in the ordinary gauge 
theories because the compactness of CP 2 introduces a natural length scale 
into the theory. 

7.3. Higgs Mechanism Geometrically. The standard model prediction 
for the ratio mve/rnzo and for my are both in agreement with experiment. 
Owing to the sensitivity of the ratio rnw/rn z to the symmetry-breaking 
mechanism it is important to try to identify the possible symmetry-breaking 
mechanism in our geometric setting and to look whether the standard model 
predictions result. The strategy is to identify the possible Higgs multiplet 
and then perform the transition to the unitary gauge (Abets and Lee, 1973) 
in order to obtain information about fermion masses. 

The lack of an explicit Higgs term in the action leads to suspect that 
symmetry breaking is realized in some sense dynamically and hence it is 
natural to look whether the classical equations of motion, which certainly 
differ from their counterparts in the ordinary gauge theory, reveal any Higgs 
term. Of course, one can worry about the meaning of the spinorial equations 
of motion because spinors are Grassmann valued. However, the classical 



610 Pitk~nen 

equations of motion are satisfied in the sense that the functional integral 
expectation values fXexp( iS )  Do 4 vanish for X = ~S/Sy  k with yk denoting 
either the coordinate variables of H or the spinor variables. This holds true 
because the functional integrand is a functional gradient. 

The spinorial equations of motion read 

i F  ~ D ~ ' t '  = - H / 2 a , ,  (54) 

where the quantity H is defined as 

H = i g ~ H ~ F k  - HkFk (55) 

The components H ~  define the second fundamental form for 6X 4 [equation 
(4)]. The term in (52) behaving like a Higgs term is given by the expression 

M = ig'~BS~/33'5 • "yAe; (56) 

Constructing the quantity xI, M 9  one can verify that M behaves like a 
Hermitian scalar field. Moreover, M behaves like a vector under the SO(4) 
transformations. Hence it is attractive to interpret M as a classical counter- 
part of a Higgs field. 

Next we address ourselves to the question, what kind of symmetry 
breaking might result from the nonvanishing vacuum expectation, value for 
the quantity M. Clearly, the action does not contain any Higgs term, but if 
one accepts that the interactions between gauge bosons and ours might be 
Higgs are describable using ordinary field theory in M 4 using the effective 
action 

Lef  t = LyM +Tr(D"MD~M) (57) 

where D~M= 0~M+[A~, M] is the covariant derivative dictated by the 
vector nature of M and A~ and M are understood as ordinary fields in M 4, 
one obtains predictions for the crucial quantities m w / r n  z and my. A 
nonvanishing diagonal expectation value for M (we shall show that 
diagonalization is always possible), 

M = M~ • 70 + MaY5 • 73 (58) 

leads to effective mass terms for the gauge bosons in (35). The photon 
remains massless because M commutes with -y and for the above-mentioned 
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ratio one obtains 

m w l m z  = g z / g w  (59) 

just as in the standard model. The form of the mass matrix M also suggests 
the mass formula M = M o + 34113 for elementary fermions. 

In the preceding argument we assumed that the diagonalization of the 
matrix M is possible. Since this diagonalization or the transition to the 
unitary gauge, as it is called in the standard model (Abers and Lee, 1973), 
besides revealing the mass spectrum of the theory particularly clearly, also 
shows how the charged degrees of freedom associated with the Higgs field 
transform to the longitudinal degrees of freedom of the massive gauge 
bosons, it is important to show that this procedure is indeed possible 
always. Clearly the diagonalizing transformation is a certain element of the 
gauge group SO(4)• U(1) so that seven parameters are associated with it. 
There are rather natural conditions for the transformation, call it g, to obey. 
First, the transformation should leave the charged gauge bosons left handed. 
This is certainly true if g belongs to the subgroup SU(2)L • U(1)R • U(1) 
(five parameters), where U(1)R is diagonal U(1) subgroup of SU(2) R. 
Second, one must require that the quantities X=  (VI2 + V03)/3 and B / 2 ,  

which are equal, transform in the same way under g, in order to retain the 
meaning of the definition of the neutral gauge bosons. Since X is purely 
right handed this implies that U(1)R and U(1) parts of g are simply related, 
e.g., U(1) part is simply some power of U(1)R part. So, we are left with four 
remaining parameters. Thirdly, the photon should remain invariant under g. 
This requirement fixes two parameters in g since both the inhomogenous 
and homogenous part in the transformation formula of the photon fix one 
parameter. Finally, the remaining two parameters are fixed by the require- 
ment that the vector M lies in the (0,3) plane so that the components MI 
and M 2 vanish. 

Concerning the detailed nature of the Higgs mechanism one can only 
state some obvious questions and propose clues, which might lead one to 
answer to these questions. The basic questions are the following: What do 
we exactly mean when we say that the quantity M develops a nonvanishing 
vacuum expectation value? Is the Higgs mechanism a single particle or a 
many-body phenomenon in the proposed theoretical framework? The ap- 
pearance of the Higgs term in the spinorial equations of motion and the fact 
that spinors are restricted on the boundaries suggest that the Higgs mecha- 
nism is a single-particle phenomenon as far as elementary fermions are 
considered. On the other hand, the classical equations of motion allow 
vacuum solutions with a nonvanishing matrix M (Appendix D, Section D2) 
and one might argue that the so-called ~ condensation around these vacuons 
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(see Section 10) giving rise to the classical space-time, as we propose, gives 
rise also to the Higgs phenomenon. 

8. STRONG INTERACTIONS AND QCD 

This section is concerned with the description of the strong interactions 
in the framework of the C P  2 theory. Section 8.1 is devoted to the description 
of the hadron spectroscopy. In Section 8.2 a unified semiclassical descrip- 
tion of the hadrons as stringlike objects is proposed. In Section 8.3 the 
relation between the proposed theoretical framework and the QCD ap- 
proach is discussed. 

8.1. Classification of the Strongly Interacting Particles. C P  2 theory 
suggests a particle classification based on the use of (a) the quantum 
numbers associated with a single-particle generation in the standard model 
of the electroweak interactions, (b) the topological charges g and h, and (c) 
the labels associated with the partial waves of C P  2 transforming irreducibly 
under the isometry group SU(3). 

Concerning the explanation of the color there are two possible ap- 
proaches, e.g., the group-theoretical and the topological approach. As was 
found in the context of symmetries, the group-theoretical explanation turns 
out to be the correct one since quarks necessarily correspond to the irreps of 
SU(3) with a nonvanishing triality. Moreover, since the color is related to 
the translational degrees of freedom of C P  2 and since the scale of C P  2 is 
given by the Planck length, the uncertainty principle suggests that the mass 
scale of the colored states is given by the Planck mass. Of course, the 
group-theoretic explanation of the color is favored also by the fact that it 
makes room also for the gluons as boundary components having spin 1 and 
moving in octet partial wave of C P  2. 

The approximate spin flavor symmetry (Close, 1979, Chap. 4) revealing 
itself via the multiplet structure and magnetic moments associated with the 
low-lying hadrons is easy to understand, when it is realized that the 
low-lying hadrons correspond to states completely symmetric with respect 
to the one-particle label (g, I3, spin) and as such may be regarded as a basis 
for an irreducible representation for the appropriate spin flavor group 
[SU(6) for the noncharmed hadrons]. Of course, this group has a purely 
formal meaning. It is. the transformation properties of the individual states 
under permutations of the labels g, I3, spin, which lead to an illusion about 
the presence of a real symmetry. 

The suggested explanation for the generation phenomenon explains 
also the well-known AI s = 1/2 rule observed in the decay of the strange 
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particles (Abers and Lee, 1973, p. 28). From the preceding it is clear that the 
concept of the strong isospin is somewhat artificial and indeed it is possible 
to label the hadron states using the weak isospin having a genuine group- 
theoretical interpretation. In general the multiplet assignments obtained 
using I~ and 13 differ, but in such a way that the above-mentioned 
nonconservation rule becomes a conservation law for the weak isospin! For 
instance, the kaon doublets decompose into a triplet and singlet with respect 
to the weak isospin and therefore in the decay K ~ ---, ~r+~r - the final state 
with I = 2 is suppressed relative to that with 1 = I s = 0. 

Cabibbo mixing is another peculiar phenomenon, where both the weak 
and the strong interactions are involved (Kobayashi and Maskawa, 1973). 
As already noticed, our theory predicts a topological transition changing the 
genus of the boundary component by one unit. Therefore we expect mixing 
between the different particle generations to take place. Because of the 
symmetry breaking the mixings are expected to be different for the fermions 
with different weak isospin and thus to be observable in weak transitions 
mediated by the charged bosons W +~-). Stating this more explicitly, we can 
describe the mixings as 

u, --, u,J  = U, 

D i ~ D / D j  = / ~  (60) 

where the matrices U / a n d  D j  are unitary. Since the emission of the weak 
boson does not change the boundary topology the amplitude for the process 

~ ~ must be proportional to the quantity ~irt1*Drj, which is nonvanishing 
unless the mixings suffered by U~ and D~ differ only by phase multiplications 
performed for "initial" and "final" states. Of course, the mixings need not 
be the same for h = 0 and [hi = 1 quarks. The assumption that only the 
boundary components with Ih[ = 1 mix noticeably would explain nicely the 
radically different behavior of quarks and leptons as far as generation 
changing transitions are considered. 

The absence of the neutral strangeness changing currents (Abers and 
Lee, 1973, p. 28) is also a peculiar phenomenon having a simple explanation 
as a manifestation of the g = 0 nature of the weak gauge bosons. 

8.2. Semiclassical Description of Hadrons. The proposed theory leads 
to a unified semiclassical description of the hadrons as stringlike objects as 
shown in Sections C4 and C5 of Appendix C. The classical equations of 
motion allow solutions of the form X 4 = X 2 x S 2, where X 2 is a minimal 
surface in M 4 having interpretation as an open or closed string and S 2 is a 
geodesic sphere in C P  2 (there are two nonequivalent, e.g., not isometrically 
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related, geodesic spheres in C P  2). In the case of an open string one can add 
spinors to the boundaries and thus obtain a model for pion (p-meson). It is 
remarkable that one can build all the known hadrons from the pionic string. 
First, on can generate nucleons simply by drilling a hole in pionic string 
(having necessarily h = 0). Second, one can generate hadrons containing 
higher generation quarks by simply drilling "wormholes" starting from and 
ending at the boundary component in question and by adding the spinors. 

The 4-momentum associated with the interior part of this universal 
hadronic solution can be expressed in the same form as that associated with 
the ordinary string Regge slope a R has the expression 

~x R = ( l , / g 2 R  2 - 1/167rG)8w (61) 

where the parameter l; obtains the values l I = 9 and l H = 1 corresponding to 
the two possible geodesic spheres of S 2. Thus the theory is fixed when one 
chooses either of the two alternatives fixing the magnitude of the parameter 
gR.  The positivity requirement for the energy favors the alternative II (the 
strings of type I have Regge slope of order 1 / G  and probably also their 
ground state masses are of the order of the Planck mass). 

It is rather surprising that the energy of the string results from 
cancellations between enormous magnetic and gravitational energies, the 
magnetic energy being associated with a diagonal and a nondiagonal 
Abelian gauge field in the cases I and II, respectively. Moreover, the energy 
of the string has nothing to do with gluons as one might expect. 

In the proposed picture the homology charge clearly plays the role of a 
coupling constant in the planar dual diagrams since only the ends of the 
strings are involved in these diagrams. So, as far as the strong interactions 
mediated by the dual diagrams are considered, only the Ihl = 1 quarks are 
active and a diquark picture of hadrons, where the homologically nontrivial 
quarks behave like a single mesonlike unit, is suggested. Since homology 
charge endows quarks with additional dynamical degrees of freedom, one 
might argue that it equips quarks with an additional degeneracy, which 
should be seen in the famous ratio R = a ( e + e - ~  hadrons)/o(e+e- ~ 
muons). One can, however, represent the following counterarguments. First, 
the degeneracy associated with the sign of the homology charge is present 
only if one assigns a definite orientation to the various boundary compo- 
nents. This is not even possible, when the hadronic 3-manifold is nonorien- 
table (a "twist" in the dual diagram makes the associated two surface X 2 in 
M 4 nonorientable). Second, the degeneracy associated with the h = 0 quarks 
is present only if the closed strings with two homologically trivial boundary 
components contribute to the annihilation vertex ~/---, q?/. These kinds of 
decays might be suppressed simply by the massiveness of these kinds of 
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hadrons. Also the requirement of causality might deny this decay: the closed 
string must contract to a point in the annihilation vertex so that the interior 
of the corresponding 4-manifold must become totally spacelike near the 
annihilation vertex. 

Certainly the picture just outlined is an oversimplification. In particu- 
lar, one might wonder, where are the gluons and sea quarks? It is rather 
amusing that semiclassical considerations give a strong support also for the 
existence of these objects. Indeed, the study of the small perturbations 
around the static string shows the existence of topologically nontrivial 
perturbations. These arise from the transversal perturbations of the string, 
which can be expressed as superpositions of the separable perturbations 
satisfying the equations 

Dx28m ~- = xXm~- 

Os2~mkr = Xm~- (62) 

Here the subscript T expresses the transversality of the perturbations. 
In the special case h = 0 a general solution to these equations can be 

written in the form 

m~- =f+~ (z, m+ )+f_k (z, m_ )+c.c.  (63) 

where f+* (_) is an analytic function of the complex coordinate z labeling the 
points of the geodesic sphere S 2 and m• = m~ m 3 are the light cone 
coordinates for the static string. The crux of the argument is that any 
nonconstant analytic function has singularities, e.g., poles and cuts. To 
make the perturbation finite one must eliminate the polelike singularities by 
cutting a hole around the pole. This in turn introduces a "hole" in the 
hadron. In the cut the perturbation is already discontinuous, which means 
the presence of the "hole." Now, the parameters describing the position of 
the pole or cut in general depend on the coordinate m+ or rn_ and as a 
consequence these singularities and therefore also the associated boundary 
components move with the velocity of light or are stationary (the depen- 
dence on m+ of m can be also trivial). 

The interpretation of the nonstationary boundary components as the 
classical counterparts of gluons is suggestive, since they are associated with 
the transversal perturbation 8m~., which is a 4-vector with two physical 
components and satisfies a massless wave equation. These are indeed 
properties characterizing a massless spin-1 particle in the conventional field 
theory. It should be stressed, however, that also the more general perturba- 
tions are allowed, for which a massive wave equation is satisfied. The 
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singularities associated with these perturbations might be interpreted as "off 
mass shell gluons" (it is the analyticity, which might give a preferred role for 
the massless perturbations). By putting spinors on the stationary boundary 
component one obtains a candidate for a sea quark. 

8.3. QCD Aspect of Strong Interactions. Quarks must necessarily move 
in triality nonzero C P  2 partial waves and, of course, the triplet partial waves 
are the simplest possible. We have also found evidence for the existence of 
"holes" in hadrons behaving like massless, spin-I particles. Furthermore, 
the interaction between the quarklike and bosonic boundary components 
must take via ~int or h vertex, depending on whether the boundary compo- 
nents in question belong to same hadron or not (Figure 4 illustrates the 
interaction vertices). It is worth emphasizing that the two vertices are locally 
equivalent and so the associated couplings should be the same. Obviously, 
there is no reason why the quarks could not exchange their color quantum 
numbers via the emission of absorption of the bosonic boundary compo- 
nents so that they are good candidates for the carriers of C P  2 octet partial 
waves. Of course, one cannot exclude the presence of other partial waves 
too, in particular SU(3) singlets. It is to be expected, however, that the 
bondary components carrying higher partial waves are unstable against 
decay to the boundary components carrying lower partial waves. 

Why, then, should QCD describe (at least approximately) the interac- 
tion between gluons and quarks? There are rather general arguments in 
favor of this idea. First, the interaction between quarks and gluons proceeds 
via the h vertex as do proceed also the interactions between other gauge 
bosons and fermions. Second, the gauge theory is the only known renormal- 
izable theory describing the interactions between massless spin-1 particles 
and spin- 1/2 fermions. 

We close with some remarks concerning the differences between QCD 
and the proposed approach to strong interactions. First, the gluons in QGD 
are topological excitations in hadrons or in intermediate states formed from 
several hadrons using the operations :~, SB, and ~. This, of course, does not 
prevent us from constructing the analogs for the QCD diagrams used in the 
modeling of e+e - annihilation to hadrons, of deep inelastic scattering, and 
of high PT scattering. Second, the duality approach to strong interactions 
seems to have nothing to do with the nonperturbative QCD. Rather the dual 
diagrams and QCD-like diagrams both contribute to the hadronic reactions 
In fact, it is the homology charge (or equivalently the magnetic charg~ 
associated with the Abelian gauge field), which plays the role of th, 
coupling constant in planar dual diagrams. Moreover, the "confining poten 
tial," e.g., the energy of the string has nothing to do with gluons. Finally, th 
confinement is expected to be a purely kinematical phenomenon: colore 
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states should have mass of order 1/G '/2 on the basis of the uncertainty 
principle. Observe, however, that the energy of the string is proportional to 
its length. As a consequence one has another type of confinement phenom- 
enon: the length of the string cannot become arbitrarily large. 

Summarizing, in QGD framework the QCD is expected to describe 
only a certain aspect of the strong interactions, which is seen clearly in the 
processes, where the duality diagrams do not contribute, such as high Pr 
reactions and Zweig forbidden processes, for instance, upsilon decay. QCD 
is expected to be just the perturbative QCD! 

9. GRAVITATIONAL INTERACTION AND QGD 

QGD seems to offer two approaches to the description of the gravita- 
tional phenomena. We shall introduce first these approaches in Sections 9.1 
and 9.2 and in Section 9.3 we shall propose a unification of these ap- 
proaches based on the idea that the classical space-time is in a certain sense 
a topological many-particle phenomenon in the QGD framework. 

9.1. Quantum Approach to Gravitation. The first approach to the 
description of the gravitational phenomena is based on the observation that 
the classical equations of motion allow massless solutions with S ~ topology 
and having rotational symmetry about the direction of the wave vector 
(Section C6, Appendix C). The last property makes it impossible to attach 
any vector polarization to the solution. It is however possible to assign a 
nontrivial tensor quantity to the solution, given for instance by the deviation 
of the metric from the flat metric. Therefore the interpretation of these 
solutions as classical gravitons is suggestive. 

These particles can interact with the ordinary matter only via the $ 
vertex and therefore they couple to all matter. A remarkable property 
possessed by the vertex is that it becomes impossible for generic 3-manifolds 
in the limit when H is contracted to M 4 (e.g., the "radius" of S goes to 
zero). Thus the continuity argument suggests that the associated coupling 
constant should be proportional to a positive power R" of the "radius" of S 
so as to vanish in this limit. Since the simplest couplings of spin-0 and 
spin-1 particles to matter fields are dimensionless (Yukawa and gauge 
couplings, respectively) it seems that also the dimensional argument favors 
the spin-2 nature of our might-be-gravitons. 

The effective action describing the interaction of massless spin-2 par- 
ticles with matter is that of GRT as Weinberg has shown using rather 
general arguments (Papini and Valluri, 1977). It goes without saying that the 
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that the neutral test particle in a $ condensate moves along a geodesic line 
of the condensate, and (c) that the Poincar6 energy of the neutral test 
particle in a stationary $ condensate is given by p0 = E/g~2, where E is the 
conserved energy associated with the particle in GRT so that in the 
Newtonian limit the Poincar6 energy corresponds to the kinetic energy of 
the particle, one obtains the classical predictions of GTR for the gravita- 
tional phenomena in planetary scale (gravitational red shift, delay of the 
radar echo, the motion of the perihelion) (Misner et al., 1973; Adler et al., 
1975). 

Of course, the assumptions (a), (b), and (c) imply that the test particle 
changes Poincar6 energy and momentum with the $ condensate and this, we 
propose, takes place via the emission of gravitons, which of course them- 
selves suffer $ condensation (it should be noticed that gravitons differ from 
the other elementary particles in that their presence does not change the 
topology of the g condensate). 

Summarizing, the semiclassical and topological considerations suggest 
the following picture. First, the gravitational as all the other interactions are 
mediated by the exchange of particles understood as appropriate submani- 
folds of H. Second, the classical space-time is a topological many-particle 
phenomenon: particles form a g condensate around a vacuon, which can 
have a macroscopic scale. The only difference between the interactions of 
free and $ condensed particles is that the various exchanged particles are 
free and move in the condensate, respectively. 

10. COSMOLOGY AND QGD 

The decomposition H = V 4 x CP2, where V 4 is flat is favored by the 
compactness requirement for the gauge group of the theory. V 4 could 
therefore be either Minkowski space M 4 or its fight cone M4+. The latter 
choice is however favored for various reasons. 

First, this choice implies the big bang cosmology (Weinberg, 1977; 
Dolgov and Zeldovich, 1981) provided the rather natural assumption that 
nothing enters from "outside" to M 4 is made. Indeed, the assumption 
implies that the particle at point (m k) has the average 4-velocity propor- 
tional to the 4-vector rn k and therefore the cosmological red shift results. 
Also the gross features of the cosmic thermal history follow from this 
assumption. 

Second, certain symmetry considerations favor this choice. Clearly, the 
only exact isometries of the light cone are the Lorentz transformations 
about the origin. Obviously the breaking of translational and Lorentz 
invariance has no consequences observable in the laboratory scale. How- 
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ever, the breaking of the macroscopic time reversal invariance finds a nice 
explanation: the retarded boundary conditions used for the macroscopic 
fields follow from the requirement that nothing enters into M 4 from 
"outside." It should be noted, however, that the breaking of translational, 
time reversal and CPT symmetry becomes microscopic at the very early 
times and should be taken into account in cosmological modeling. 

Next we consider in more detail the basic features of the resulting 
cosmology. It deserves to be noticed that M 4 corresponds to empty, 
hyperbolic cosmology with a Robertson-Walker-type metric (Misner et al., 
1973; Adler et al., 1975) 

ds2= dt 2 -  t2[dr2/(1 + r2)+ r 2dn 2] (64) 

where the variables t and r are related to the M 4 coordinates via the 
formulas 

t = [ ( m O ) 2 - r 2 ]  1/2 

r = rM/ t  (65) 

where r M denotes the radial coordinate of M 4. Clearly, t is the proper time 
for the world line connecting the point (m k) to the origin and is Lorentz 
invariant. The "nothing from outside" assumption obviously implies that 
matter is comoving in these coordinates (on the average, of course). More- 
over, the assumption of isotropy and homogeneity (e.g., the so-called 
cosmological principle) corresponds to the invariance of the matter distribu- 
tion with respect to the Lorentz transformations leaving the origin fixed. 
The Hubble constant is given by H = t-  ~ and thus the age of the universe is 
predicted to be rather large: t u - 1 8 x l 0 9  yr. Of course, gravitational 
corrections could change both the definition of the cosmic time and the 
relation between H and cosmic time so that the age of the universe gets 
shortened. 

The most natural approach to the history of the universe in the 
proposed scheme is to neglect the effects related to the :~ condensation and 
to do cosmology in fixed M 4 background. This approximation is expected 
to be reasonable for sufficiently early times because the high temperature is 
expected to make the :~ condensate an unstable phase. More concretely: the 
assumption means only that we drop the basic equation of the GRT 
cosmology. T ea = ~G ~a, idealize particles with pointlike particles in M4+, 
and write the kinetic equations (Dolgov and Zeldovich, 1981) governing the 
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time behavior of the Lorentz-invariant particle densities in the fixed M 4 
background. 

The principal differences between the proposed and the usual GRT 
cosmology are the following. First, M 4 has no particle horizons, which 
means that the isotropy of the 3-K radiation poses no problems (Dolgov 
and Zeldovich, 1981). Also, concerning the explanation of matter-anti- 
matter asymmetry (Dolgov and Zeldovich, 1981) in the QGD context this 
feature has a welcome consequence. Since baryon number is conserved in 
QGD, the asymmetry must be a local phenomenon, perhaps related to the 
condensation and the CP breaking associated with the vacuum solutions 
(Sections D1), which act as condensation centers. In GRT cosmology the 
main argument against the local matter-antimatter asymmetry (Dolgov and 
Zeldovich, 1981) is that the regions ontaining only matter-antimatter must 
have been formed rather early (t <10 -3 s) and so the galaxies should 
contain typically the number of nucleons inside the maximal causally 
connected region at the time of the matter-antimatter separation, typical- 
ly about 109 nucleons. Now, of course, the radius of the minimal causally 
connected region is infinite. 

A second difference is that now one does not have Einstein equations, 
which together with the equation of state fix the relation between cosmic 
time and temperature. One can however fix the dependence between tem- 
perature and the cosmic time at early times by assuming that the matter is 
radiation dominated, e.g., the matter density is proportional to the fourth 
power of the temperature T and that the time evolution is adiabatic. As a 
consequence one obtains the relation 

T = C / t  (66) 

where the constant C remains undetermined now and can be fixed from the 
observed helium abundance of the universe. So this simple approach does 
not predict helium abundance unlike GRT cosmology (Dolgov and 
Zeldovich, 1981). A welcome consequence is that in this approach no bound 
for the number of the light neutrino types is predicted either (the number is, 
of course, not finite if the generation genus correspondence is accepted) 
(Dolgov and Zeldovich, 1981). 

It is rather natural to ask whether it could be possible to idealize away 
all details of the matter distribution and obtain models for the universe as 
Lorentz-invariant, graphlike solutions to the field equations. In Section D4 
it is shown that this kind of solutions can be found but that their energy 
density is negative so that any simple-minded cosmological interpretation is 
impossible. 
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11. SUMMARY AND CONCLUSIONS 

The basic features of the suggested elementary particle theory deserve a 
short discussion. 

(a) Topological Level. Particles are identified as three-dimensional sub- 
manifolds of some metric space H. The hypothesis leads to a rough particle 
classification using the boundary topology and a topological explanation for 
the generation degeneracy is proposed. Also the topology of H brings an 
important element to the particle classification. The boundary components 
of a 3-manifold are classified by their homology equivalence classes in the 
group H2(H), which for S = CP~ is isomorphic to integers. It turns out that 
the baryonic and mesonic valence quarks indeed carry homology charges 
( 1 , -  1,0) and ( 1 , -  1), respectively, but that the attempt to explain color 
homologically fails. 

A topological classification of the interaction vertices is performed 
leading to a generalization of the dual diagrammatics so that also the 
3-particle vertices of field theory find their topological analogs. 

(b) Construction of the Dynamics. The construction of the dynamics of 
the model is based on three basic hypotheses. First, the boundary compo- 
nents of a 3-manifold representing particles are carriers of various dynami- 
cal charges besides the topological ones. Secondly, the theory should have 
the formal structure of an Einstein-Yang-Mills theory defined on X 4 and 
finally, the YM structure and the accompanying metric and spinor structure 
should result from the natural geometric structures of the space H. The 
mathematical device used to obtain these structures on X 4 is the so-called 
induction procedure. It is remarkable that the decomposition H = M~+) • S 
provides an elegant way to avoid the pathologies associated with the 
noncompact gauge groups. 

(c) Quantization of the Theory. A correspondence principle based on 
the geometric representation of an ordinary field theory is used as a 
guideline in a heuristic formulation of the quantized theory. The essence of 
the correspondence principle is that the Feynman propagator G(x, y) is 
expressible as a path integral over the paths from x to y. The suggested 
theory can be thought to present a generalization of a field theory, obtained 
by thickening the paths contributing to the above-mentioned functional 
integral to 4-manifolds in H or equivalently, by generalizing the particle 
concept (three-dimensional manifold instead of a point particle). Using this 
correspondence principle we obtain a description for the generalized Green's 
functions, a rather unique definition of one-particle states, and finally, a 
formal definition of transition amplitudes and probabilities. 

(d) Choice of H. Accepting the topological explanation for the genera- 
tion degeneracy (generation genus correspondence) and the group-theoreti- 
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cal explanation for color (the isometries of S give rise to color symmetry), 
the only remaining quantum numbers needed for the classification of the 
observed particles are those associated with the standard model of the 
electroweak interactions. It is remarkable that the choice S = CP 2 probably 
uniquely leads to the coupling structure of the standard model predicting 
for the Weinberg angle the value sin2Ow = 9/26. Moreover, the isometry 
group of CP 2 is indeed SU(3). The right-handed neutrinos are predicted to 
decouple totally from the gauge interactions. Furthermore, the baryon and 
lepton numbers are separately conserved as a consequence of the gener- 
alized chiral invariance so that proton is absolutely stable against the 
spontaneous decay provided the colored states are massive enough. 

(e) Classification of the Strongly Interacting Particles. Concerning the 
classification of the strongly interacting particles a few remarks are in order. 
First, the classification uses only the topological quantum numbers g and h 
besides the quantum numbers associated with the gauge group of the 
standard model and with the color group and leads to the understanding of 
the broken flavor spin symmetry as an effective symmetry resulting from the 
properties of the hadronic states under the permutations of the labels 13 and 
g. Second, the basic peculiarities associated with the weak interactions of 
hadrons--Cabibbo mixing, absence of the neutral strangeness changing 
currents, and the A I = l / 2  rule--f ind their natural explanation in the 
suggested scheme. Finally, even if the valence quarks turn out to be carriers 
of homology charges 0hi = 1,0, the correct explanation of the color is group 
theoretical. The key observations in this respect are the following. First, 
various field quantities are not quite SU(3) singlets but carry an anomalous 
hypercharge Y= 2Qe,,. Second, one can generate from the coordinate 
variables of CP 2, besides the irreducible triality zero representations, also 
pseudorepresentations with nonvanishing triality but with an anomalous 
hypercharge. Associating with field quantities partial waves so that the total 
anomalous hypercharge vanishes one finds that quarklike and leptonic state 
functionals transform according to t = 1,2 and t = 0 representations of 
SU(3). Moreover, quarks and antiquarks correspond to triality 1 and - 1  
representations, respectively, so that fractionally charged states are always 
colored. 

(f) Dynamics of the Strongly Interacting Particles. As regards the dy- 
namics of the strongly interacting particles, some remarks should be made. 
First, with respect to the electroweak interactions quarks are expected to 
behave like fractionally charged pointlike particles so that the theory should 
be consistent with the parton picture used in the description of the various 
high-energy phenomena (the idea of spinors, in particular, quarklike spinors 
on boundaries, was partly motivated by the parton picture). Second, string- 
like objects appear as solutions to the classical equations of motion and one 
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obtains also baryonic strings. As a consequence the theory leads to a 
generalization of dual diagrams as a graphical description of the strong 
interactions so that baryons find their natural place in this description. 
Moreover, homology charge plays the role of coupling constant in planar 
dual diagrams. Thirdly, the elimination of the singularities associated with 
the transverse excitations of the string leads to topologically nontrivial 
excitations (holes in a hadron), which represent natural candidates for 
gluons. The fact that these might be gluons interact with quarks via the 
vertex makes QCD a natural candidate for an approximate description of 
the quark gluon interactions. It should be emphasized, however, that in the 
proposed scheme QCD is expected to describe only a single aspect of strong 
interactions. Stated more precisely: dual diagrams are not only a phenome- 
nological description of the nonperturbative QCD effects but rather it is the 
topological generalization of the dual diagrammatics which gives rise also to 
QCD-like diagrams in the description of the strong interactions. Finally, the 
fact that color degeneracy is closely related to the translational degrees of 
freedom of C P  2 suggests a purely kinematical explanation for the color 
confinement. Colored states perform a nontrivial center-of-mass motion in 
CP 2 degrees of freedom and since the radius of CP 2 is of the order of Planck 
length, the mass scale of the colored states is most naturally given by Planck 
mass (uncertainty principle). 

(g) Gravitation. Concerning the description of the gravitational phe- 
nomena in the proposed framework, the basic problem to be understood is, 
why the classical, general relativistic space-time is so useful a concept. It is 
proposed that the classical space-time can be understood as a kind of a 
topological many-particle phenomenon. First, the theory allows both par- 
ticle and vacuumlike solutions to the equations of motion so that the latter 
can have an arbitrarily large scale. Second, when dim H < 9 the transition 
particle U vacuon ~ particle :~ vacuon takes place with high probability. 
We call this phenomenon g condensation. Moreover, the theory allows 
graphlike solutions with a metric, which is asymptotically Schwartzchild 
metric. The metric in the asymptotic region could be interpreted as that 
created by the matter, which has suffered g condensation around vacuon. 

The utmost importance of gravitation in understanding the gross 
features of the elementary particle mass spectrum comes as a surprise. 
Indeed, depending on whether one adds to the action the curvature scalar 
term or not, the prediction that the scale of CP 2 should be given by Planck 
length or by a typical elementary particle length, follows! 

(h) Cosmology. The basic cosmological facts afford a crucial test for the 
theory. Indeed, the choice V 4 = M 4, e.g., the light cone of M 4, makes the 
big bang cosmology a kinematical necessity and at the same time allows 
Poincarb invariance at the laboratory scale. Moreover, the light cone cos- 



626 Pitk~nen 

mology avoids the problems associated with the finite horizons in GRT-based 
cosmologies. 

(i) Problems. Some remarks concerning the open problems in the 
theory are in order. Besides the formidable technical problems related to the 
quantization of the theory there are various aspects, which might/should be 
understood before the quantization of the theory. First, the semiclassical 
description of leptons represents an open problem. The pointlike nature of 
the leptons suggests that at least the charged leptons should correspond to 
the classical solutions of the form M 1 • X 3, where M 1 is a geodesic of M 4 

and X 3 is a submanifold of CP 2. However, the possibility that leptons 
correspond to the closed strings of type I (Section C4) having Regge slope 
of order G is not completely excluded. Second, the qualitative features of 
the mass spectrum should be understood. Semiclassical considerations sug- 
gest that the mass scale of a generic particle is given by Planck mass so that 
the masses of ordinary elementary particles result from rather miraculous 
cancellations (topological simplicity, color neutrality). Concerning the more 
detailed features of the mass spectrum such as the dependence of the lepton 
and quark masses on generation index, the situation is completely open. 
Thirdly, since baryon and lepton numbers are separately conserved, the 
explanation of the matter-antimatter asymmetry represents a crucial test 
for the theory. Because vacuum solutions and also the Schwartzchild-type 
solutions break CP symmetry, it is tempting to conjecture that the asymme- 
try as well as the CP breaking observed in a KKsystem are closely related to 
the phenomenon of :~ condensation. Finally, there is a problem created by 
the theory itself. Poincar6 energy turns out to be a nonpositive definite 
quantity [membranelike solutions and Lorentz-invariant solutions (Sections 
C3 and D4, respectively)]. 

Summarizing, we suggest that the unified description of the basic 
interactions might proceed, not via the naive extension of the gauge group, 
but via the generalization of the elementary particle concept itself, so that 
the topological concepts play a fundamental role both in classification of 
the elementary particles and in the description of their interactions. 

APPENDIX A: BASIC PROPERTIES OF C P  2 

AI. C P  2 a s  a Manifold. C P  2 o r  the complex projective 2-space is 
defined by identifying the points of the complex 3-space C 3 under the 
equivalence 

(z,, z~, z~) = X(z,, z2, z~) (AI) 

Here ?t is any nonzero complex number. The pair z i / z  j for a fixed j and 
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zj ~ 0 defines a complex coordinate chart for CP 2. A sj  runs from 1 to 3 one 
obtains an atlas of three charts covering CP 2, the charts being holomorphi- 
cally related to one another (e.g., CP 2 is a complex manifold). The points 
with z 3 :~ 0 form a subset of C P  2 homeomorphic to R 4 and the points with 
z 3 = 0 a set homeomorphic to CP~ = S 2. Therefore CP 2 is obtained from R 4 
by adding "a  2-sphere at infinity." 

Besides the complex coordinates ~ =  z i / z  3, i = 1,2, the coordinates of 
Eguchi and Freund (Eguchi et al., 1980) will be used and their relation to 
the complex coordinates is given by 

~jl = z + i t  

~2 = x + iy (A2) 

These are related to the "spherical coordinates" via the equations 

~1 = r exp [i ( ~b + ~ ) /2 ]  cos(0 /2)  

~z = rexp[ i (% - ~ ) /2 ]  sin( 0 /2)  (A3) 

The ranges of the variables r, 0, ~b, and q~ are [0, oo], [0,1r], [0,47r], and 
[0, 2ir], respectively. 

Considered as a real four-dimensional manifold, CP2 is compact and 
simply connected, with Euler number 3, Pontryagin number 3, and second 
Betti number b z = 1. The last property stems from the fact that the second 
homology group H z ( C P  2) is isomorphic to integers. 

A2. Metric and K~hler Structure of C P  z. In order to obtain a natural 
metric for CP 2 observe that CP 2 can be thought of as a set of the orbits of 
the isometries zj ~ exp(ia)zj  on the sphere $5: E 3 = l l z k l  2 = R 2. The metric 
of CP 2 is obtained by projecting the metric of S 5 orthogonally to the orbits. 
Therefore the distance between two points of CP 2 is that between the 
representative orbits in S 5. The line element has the following form in 
complex coordinates: 

ds 2 = ga;d~ ~ d (  b (A4) 

where the Hermitian metric g .g  is defined by 

gag = R2Oa Ogln F (A5) 

Here the quantity F is defined as 
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A n  explici t  r epresen ta t ion  of the metr ic  is given by 

d s 2 / R  2 =  ( d r  2 + r2032 ) / F  + r 2 ( o ,  2 + 0 2 2 ) / F  2 

where  the quant i t ies  o k are  def ined  as 

% = ( 1 / r 2 ) I m ( ~ ' d ~  2 - ~2 d~2) ,  

o3=-(1/r2)Im(F_,tkd(k) 

Pitk~inen 

(A7)  

a2 = _ (1/r2)Re( l d ( 2  _ a r t )  

(AS)  

( A l l )  

The  metr ic  defines a real, covar ian t ly  cons tant ,  and  therefore  closed 
2- form J :  

J = - i g ~ g d ~  a A d (  b (A12)  

Because J is closed C P  2 is by  def in i t ion  a K~ihler mani fo ld .  The  form J 
defines in C P  2 a symplec t ic  s t ructure  because  it satisfies 

j k l j i  m = _ 6k,, (A13)  

The  form 2 J  is integer  valued and  by  its covar ian t  cons tancy  satisfies free 
Maxwel ls  equat ions .  Hence  it can be regarded  as a curva ture  form of  a U( I )  

R o l = e  ~  l - e  2Ae 3, 

R02 = e ~ A e 2 - e 3 A e l, 

R03 = 4e ~ A e 3 + 2 e  I A e 2, 

R23 = - -  e ~ A e 1 + e 2 A e 3 

R31 = - e ~ A e 2 - e 3 A e I 

Ri2 = 2e ~ A e 3 + 4 e  ~ A e 2 

The  vierbein  forms e A are given by  

e ~ = d r / F  

e I = r o l / F I / 2  = r d O / 2 F I / 2  

e 2 = r o 2 / F I / 2  = r s i n O d q ~ / 2 F I / 2  

e 3 = r o 3 / F  = r [ d q ~  + c o s 0 / 2  d q ~ ] / 2 F  (A9)  

The  vierbein  connec t ion  assoc ia ted  with the vierbein  forms (A9) is given by  

V01 = - e ' / r ,  V23 = e ' / r  

V02 = _ e 2 / r ,  V31 = e 2 / r  

V03 = ( r  - l / r ) e  3, V|2 = (2 r  + 1 / r ) e  3 (A10)  

The  componen t s  of  the curvature  are cons tan t  
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connection B carrying a magnetic charge of one Dirac unit 1 /2g .  Locally 
one has therefore 

S = d B / 2  (A I4) 

It should be noticed that the magnetic flux of J through a 2-surface in CP z 

is proportional to its homology equivalence class, which is integer valued. 
The explicit representations of B and J are 

B = 2re 3 

J =  2(e ~ A e 3 + e j A e I ) (A15) 

A3. Spinors in CPz. As Hawking has shown (Hawking and Pope, 
1978), CP 2 does not allow spinor structure in the conventional sense. 
However, the coupling of the spinors to a half-odd multiple of the K~ihler 
connection B leads to a respectable spinor structure. Because the intricacies 
associated with the spinor structure of CP 2 play a fundamental role in the 
construction of the proposed theory we repeat the arguments of Hawking 
here. 

To see how the space can fail to have an ordinary spinor structure 
consider the parallel transport of the vierbein in a simply connected space 
M. The parallel propagation around a closed curve 7 with a base point x 
leads to a rotated vierbein at x: ~'~ = RABe B and one can associate to each 
closed path an element of SO(4). Consider now a one-parameter family of 
closed curves y(v) ,  v ~ [0, 1] with the same base point x and 3'(0) and 7(1) 
trivial paths. Clearly these paths define a sphere in M and the elements 
RAB(v )  define a closed path in SO(4). When S 2 is contractible to a point, 
e.g., homologically trivial the path in SO(4) is also contractible to a point 
and therefore represents a trivial element of the homotopy group HI(SO(4)) 
= Z 2. However, for a homologically nontrivial 2-surface S 2 the associated 
path in SO(4) can be homotopically nontrivial and therefore corresponds to 
a nonclosed path in the covering group Spin(4) (leading from the matrix 1 
to the matrix - 1 in the matrix representation). Assume that this is the case. 

Assume now that the space allows spinor structure. Then we can 
parallelly propagate also spinors and by the above construction associate a 
closed path of Spin(4) to the surface S 2. Now, however, this path corre- 
sponds to a lift of the corresponding SO(4) path and therefore cannot be 
closed. Thus we have a contradiction. 

From the preceding argument it is clear that one could compensate the 
nonallowed - 1  factor associated with the parallel transport of the spinor 
around the sphere S 2 by coupling it to a gauge potential in such a way that 
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in the parallel transport the gauge potential introduces a compensating - 1 
factor. For a U(1) gauge potential this factor is given by the exponential 
exp(i2~), where the quantity �9 is the magnetic flux through the surface. 
This factor has the value - 1 provided the U(1) potential carries a half unit 
of Dirac charge 1 /2g  or, more generally, half-odd multiple of it. In the case 
of CP 2 the required gauge potential is an odd multiple of the quantity B / 2  
defined previously. In the case of M~§ • CP 2 we can in addition couple the 
spinor components with different H chiralities independently to the odd 
multiple of B/2 .  

A4. Geodesic Submanifolds of CP 2. By restricting the coordinate varia- 
bles of CP 2 to a geodesic submanifold (defined as a submanifold for which 
the geodesic lines are also geodesic lines of imbedding space) S of CP 2, one 
obtains a "subtheory" with Her f = V 4 • CP 2. So one can ask, What kind of 
geodesic submanifolds CP 2 has besides the geodesic lines? One can answer 
this question by observing that CP 2 is a symmetric space (Helgason, 1978), 
e.g., representable as a coset space SU(3) /SU(2) .  

In the book by Helgason a general characterization of the geodesic 
submanifolds of an arbitrary symmetric space G / H  is given. The geodesic 
submanifolds are in 1:1 correspondence with the so-called Lie triple 
systems of the Lie algebra g of the group G. The Lie triple system t is 
defined as a subspace of g characterized by the closedness property with 
respect to double commutation: 

[ X , [ Y , Z ] ] ~ t  forX ,  Y , Z ~ t  (A16) 

It is rather straightforward to verify that SU(3) allows, besides the 
geodesic lines, two nonequivalent (not isometry related) two-dimensional 
geodesic submanifolds, which have the topology of 2-sphere. This can be 
understood by observing that SU(3) allows two nonequivalent SU(2) subal- 
gebras. The first subalgebra corresponds to the group SO(3) of the 3 • 3 
orthogonal matrices and the second algebra integrates to the usual isospin 
group SU(2). The nonequivalence of the algebras is obvious from the fact 
that they integrate to nonisomorphic groups. By taking a subset of any two 
generators from these algebras one obtains the two nonequivalent Lie triple 
systems. 

Convenient representatives for the geodesic spheres of CP 2 are given by 
the equations 

I: ~, = ~2 or equivalently (0 = rr/2, ~ = O) 

II: ~l = ~2 or equivalently (0 = rr/2, + = O) 
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The nonequivalence of these submanifolds is clear from the fact that 
isometries act as holomorphic transformations in CP 2. The vanishing of the 
second fundamental form, which is equivalent to the geodesic submanifold 
property, is easy to verify by a direct calculation. 

APPENDIX B: THE REPRESENTATION OF ISOMETRIES OF H 

The aim of this Appendix is to show that the isometries of CP 2 are 
representable as symmetries of the action defining the theory. The problem 
is essentially that of finding the action of the isometries on the spinors 
because the bosonic part of the action is invariant under isometries (KLkler 
form is covariantly constant and thus invariant under isometries). 

It is instructive to prove the infinitesimal representability of the isome- 
tries first in the general case, when H allows ordinary spinor structure. So, 
let h k - ,  hk +  ej  k be the infinitesimal isometry so that the infinitesimal 
generator satisfies the well-known Killing identities (Misner et al., 1973; 
Adler et al., 1975) 

Dtj  k + Dk j  t= 0 (B1) 

The following theorem holds true: 

Theorem. The quantity L = 't 'F"Dfl' is invariant under the infini- 
tesimal isometries of H realized according to 

8,1, = ie( a , j ,Y .* ' /2  + j * v , ) , I ,  - i e X q l  (B2) 

Before going to the proof observe that the transformation formula 
has a simple interpretation. The isometry is interpreted as a flow in 
H and the spinor field is translated along the flow lines by parallel 
translation: besides the usual rotation, the spinor field suffers a 
gauge transformation given by the so-called nonintegrable phase 
factor (Wu and Yang, 1976). 

Proof The metric of X 4 is invariant under the action of isometries and 
therefore it suffices to consider the term L,,~ = 't'F,,D#'t'. The change of this 
quantity can be written as 

8L,,/s = ~ (  K,,D/s + F, Lt~)'t' (B3) 
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where the quantities K~ and L .  are defined as 

K,~ = 8F,~ + e[ I-',:,, X] 

L,~=~V,,+eO,~X+e[V,X] 

(B4) 

(BS) 

Obviously the requirements K = 0 and L = 0 guarantee the invariance of the 
action, the latter requirement implying that the isometries act as gauge 
transformations. These conditions can be transformed into a simpler form 
by using the definitions of the connection and induced gamma matrices: 

OrFkjr + [ l'k, X]+ ~Okj  r= 0 

Oykj~ + VrOkj~ + OkX + [Vk, X] = 0 

(B6) 

(B7) 

The first condition is found to be true by using the covariant constancy 
of the gamma matrices and Killing identities. The derivatives of jk con- 
tained in the second equation can be eliminated by using the equation 
defining the curvature tensor 

OmDnj  k -- DnOmj  k = RSkrnn.~ (B8) 

and Killing identities. Using the representation of the vielbein curvature in 
terms of the curvature tensor the second equation can be cast into the form 

j r  Z Rrkmn = 0 (B9)  
c 

where the sum is over the cyclic permutations of the indices k, m, n. Because 
of the so called cyclic identities satisfied by the curvature tensor this sum 
however vanishes so that also the equation (B.7) is true. �9 

Next we turn to the case of M 4 X  C P  2. Clearly the presence of the 
K~hhler connection introduces an additional term to 6L: 

~ L  add = ie~F"YkO,,sk(l+ +31_  )q" +g.c.  (BIO) 

where the quantity Yk is defined as 

Yk = OrBkjr +(Br /2)  OkJ r (B l l )  

So, provided the quantity Yk is expressible as a gradient of some quantity, 
say, Z, we can indeed compensate 6L add by an infinitesimal gauge transfor- 



Topological Geometrodynamics 633 

mation performed for the spinor field 

~ x I ' t  a d d  = - -  ieZ(l+ + 31_ )xt" (B12) 

The representation of yk as a gradient in turn follows from the fact that the 
isometries of CP 2 can be regarded as Hamiltonian flows: 

Theorem. The infinitesimal isometries of C P  2 c a n  be regarded as 
infinitesimal Hamiltonian flows with respect to the symplectic 
structure defined by the K~hler form J, e.g., for an infinitesimal 
isometryj  k there exists a Hamiltonian H so that 

jk = jklot H (B13) 

and as a consequence the quantity is expressible as a gradient of the 
quantity 

Z = ( S B r / 2 +  H) (B14) 

Proof The existence of H satisfying (B13) follows from the fact that J is 
invariant under isometries and closed as a 2-form. To see this observe that 
(B13) is equivalent to the integrability condition 

Or( Jmnjn)- cgm( Jrnjn) =o (B15) 

Using the closedness property of J, 

OmJrs-l- OrJsm-l- OsJmr=O (B16) 

one can transform the equation 

OmJrsJm + J.,sOrjm + JrmOsJ m (B17) 

expressing the infinitesimal invariance of J.,n under isometries to the equa- 
tion (B15) and thus the existence of H is shown. The representation of the 
quantity yk as gradient is obtained by a direct calculation expressingj k in 
terms of H. �9 

Summarizing, a spinor field transforms under the infinitesimal isome- 
tries according to the formula 

8 ~ = i e [ X - Z ( l +  + 3 1 _ ) ] q ' -  J ~  (B18) 

Since the isometries are represented as gauge transformations infinitesi- 
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mally, the representation cannot be integrable in the ordinary sense. This 
can be seen by calculating the commutator of two infinitesimal isometries 
j k, i = 1,2, having the representation matrices J,: 

[J , ,  "/2] = JII.2] + J~j~Fk/ (B19) 

The additional term, where Fkt denotes the curvature form of the spinorial 
connection, implies that the representation is not integrable in the ordinary 
sense. One can speak of a group representation modulo gauge transforma- 
tions, which can be thought of as a generalization of the ordinary projective 
representations (Varadarjan, 1970). 

APPENDIX C: CLASSICAL ASPECTS OF THE THEORY I 

This Appendix is devoted to the classical aspects of the theory. Classi- 
cal equations of motion are given and some families of particlelike solutions 
to the equations of motion will be obtained. The solutions should provide 
semiclassical models for hadrons and various massless particles. 

C1. Classical Equations of Motion. The classical equations of motion 
are obtained as extremum conditions for the action defining the theory. The 
equations for the coordinate variables h k are 

D~([T~13-(1/8~rG)G~/J]hk~)-Tr(j~Fkth'~) = 0  (C1) 

where the covariant energy momentum tensor and the gaug6 current are 
defined as 

T " a =  - ( 1 / g 2 ) T r [  F~'.yF vp +(I/4)g~'BFt'"F~,,] - T'~a/g 2 (C2) 

j~'= (1 /g2)D#F '~t~ (C3) 

It should be noticed that the gauge field F~t ~ is the projection of the 
curvature form of the connection of H and therefore the vierbein part of F 
is the projection of the curvature tensor of H. 

These equations can be regarded as a generalization of the equation 
defining Lorentz force in ordinary electrodynamics. In fact, by taking 
projections to the directions of the tangent vectors of X 4 one obtains 

D~T~ = Tr( jpF ~/J ) (C4) 

which is simply the definition of the Lorentz force and holds identically true 
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reflecting the fact that the freedom to choose the coordinates of X 4 
arbitrarily reduces the number of dynamical degrees of freedom from n + 4 
to n ( = dim S). 

The equations of motion for the spinor field, which for Grassmann- 
valued spinors have sense only as functional expectation values [e.g., in the 
sense that the quantities fexp(iS)8S/Sd~kDCp vanish since the integral is 
functional gradient] are given by 

where we have defined 

H 
F~ ' = - i T ,t, (C5) 

~.aBuk p = Hkrk H = 63 "'aflXk (C6) 

Here the quantities H ~  define the so-called second fundamental form (4). 
Equation (C5) can be written also in the form resembling massless Dirac 
equation 

( r a g  + D ~ r . ) ~  = o (C7) 

The equations resulting from the variation of the coordinate variables 
h k on the boundaries of X 4 are given by a rather awkward expression: 

[(T "t~- kG"~)hk~-Tr (  F"~Fkth'o)]( - g4) '/2 

= [ D.( T~* )+-~F"F*,h'2t '](-  g3)'/2 + ( D f  )* , [T{*(-  g4) '/2] (C8) 

The quantities T~* and T~ k= T~Oh~ can be thought as generalizations of 
energy momentum densities associated with the fermionic and bosonic 
degrees of freedom, respectively: 

T~ k = [ ~ ( r - z S ~  - z S - r a ) ~  + ( .  ~ -~ B)] h*~ 

+ ~ ( r * f i  - - f i - r * ) ~  , (c9)  

T;~ = [ g~Bg~. _ g:.g~. _ ( g~# _ g;~ ) g~. _ ( g~. _ g~. ) g ~  ](  p n v ) 

1[ . . [  k " " , ) v v )] ig~"g~. l t tn )+g~g~.{ t zSI  + ( a ~  --*fl) (C10) +~[g3 



636 Pitk~nen 

The covariant derivative appearing in (C8) is defined as 

k (Cll) 

The equations have clearly the nature of boundary conditions guaranteeing 
the conservation of various isometry charges. 

C2. Explicit Form of the Action. In sequel the explicit form of the 
action density will be useful. The YM part of the action density can be 
written in the form 

t y M =  - - ( 8 / g 2 ) [ 1 8 ( e  0 A e3)2+ 18(e I A eZ)2+ 32e ~ A e3-e' A e 2 

+ ( e  ~  2 A e 3 ) 2 + ( e  ~  2 - e  3 A e ' )  2] (C12) 

where we have used the same notation for the projections of the vierbein 
components as for vierbeins themselves. 

The curvature scalar can be written in the form R = R~ + R 2, where the 
part R t, which is present only when H is curved, can be written in the case 
of H =  V 4 x CP 2 as 

R, = - 4 R 2  [4(e ~ A e3)2+4(e t  A e 2 ) 2 + ( e  ~ A e ' )2+  {e ~ A e2) 2 

- ( e  2 A e3 )2 -  (e '  A e 3 ) 2 - 2 e  ~ A e ' . e  2 A e 3 + 2 e  ~ A e2.e '  A e 3 

+ 4 e  ~ A e3-e t A e 2] (C13) 

The part R2 can be expressed using the second fundamental form 

R 2  h k l (  I..l'ketfl-ll _ l-lka ldllf ~ 
= "" "'aft *" a'" f !  (C14) 

Of particular interest will be the two nonequivalent Abelian subtheories 
obtained by restricting CP 2 variables either to the geodesic sphere S~: 
(8 = 7r/2, ~ = 0) or sn :  (8 = ~r/2, 't' = 0). It is advantageous to use ordinary 
spherical coordinates (0 ,  ~ )  instead of the coordinate variables (r,  ~)  and 
( r , ~ )  in the cases I and II, respectively. The relation between the two 
coordinate sets is given by the equations 

I: c o s |  II" c o s |  '/2 (c15) 
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In these coodinates the line element has the form 

ds 2 = R2(  d02  + sin20 d ~  2) (C16) 

Both geodesic spheres have same radius, as is clear from the fact that CP z 
allows geodesics of only one type. 

The nonvanishing components of curvature have the expressions 

Ro3 = 2R12 = 4e ~ A e 3 = -- du A d ~  (C17) 

and 

Ro2 = - R31 = e 0 A e 2 = du A dOP/2 (C18) 

in the cases I and II, respectively. Here we have used the notation u = cos O. 
The YM part of the action can be written in the form 

L/VM = -- (1 /4) (  F i)2 (C19) 

where we have defined the gauge field as 

F i= nidu A dcb (C20) 

Here one has nl 2=  36 /g  2 and nii 2=  8 / g  2 corresponding to the two cases 
i = I and II, respectively. 

The part R~ of the curvature scalar can be written as 

R, = R2(au ^ d ~ )  2 (C21) 

and has same form in cases I and II. 

C3. Particlelike Solutions with Vanishing Gauge Fields. The action 
defining the theory is quadratic in spinor and gauge fields so that the 
surfaces having F~/~ = 0 are vacuum solutions for the theory defined by a 
pure YM action. Geometrically the condition means that the projection of 
the 4-surface to the space S is at most one dimensional, as is seen by 
choosing the coordinates so that X 4 has the representation s k= const for 

k ~ k  o. 
For the theory defined by the action S = SyM + S~x the interior equa- 

tions of motion reduce to 

G"~H~B = 0 (C22) 
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so that the vacuum degeneracy is removed to a great extent. It is easy to see 
that surfaces of the form M i X  X 2 x  S I ("membranes"),  where M L is a 
timelike geodesic of M 4, X 2 an arbitrary surface in the orthogonal comple- 
ment of M 1, and S I a geodesic in CP 2, satisfies the equations of motion. 
The equations of motion reduce to geodesic equations for M l and S I 
because the Einstein tensor for the product manifold X 2 x y2 is given by 
the expression 

G ~ = - ( g~BR 2 + g~#g I ) / 2  (C23) 

where the indices 1 and 2 refer to the manifolds X 2 and y2, respectively 
(Einstein tensor of a 2-manifold vanishes identically). 

The mass of the solution is quantized being proportional to the Euler 
characteristic of the manifold X 2 (Eguchi et al., 1980, p. 344) 

M =  ( I / 2 G ) L ( g  + n / 2 -  1) (C24) 

Here g and n denote the genus and the number of holes in X 2 and L denotes 
the length of the CP 2 geodesic which is equal to erR. Since R is of the order 
of Planck length, the mass is enormous except for the solutions having 
either the topology of the torus of a 2-sphere with two holds. A rather 
peculiar feature of the solution is that the rest energy is negative for the 
standard choice of the time orientation when g = 0 and n is smaller than 2. 

C4. Stringlike Solutions. Stringlike objects are obtained as solutions of 
type X 4 = X 2 x y2 c A x B, where A is a time linear submanifold of M 4 
and B is the orthogonal complement of A in H. The separability require- 
ment for the equations of motion implies that either (a) yZ is a geodesic 
sphere S 2 in C P  2 and X z is a minimal surface in M 4, e.g., the trace of the 
second fundamental form vanishes: 

M* = o ( c25 )  

[for the definition of the second fundamental form see (4)] or (b) that X 2 
corresponds to a static string in M 4, e.g., is a timelike plane strip and that 
y2 minimizes its energy. Observe that the Einstein tensor has nonvanishing 
components only for X 2 indices. 

The equations of motion for X 2 are exactly the same as those satisfied 
by the orbit of the string in the string model. The 4-momentum of the 
solution can be expressed in the same form as in string model. In case (a) 
one obtains 

e* = k , fg~162 & (c26) 
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The mass is proportional to the length of the string, the proportionality 
factor k~, i = I, II, is different for the two nonequivalent geodesic spheres 
and is given by the expression 

k, = 8~r( l i - g2R2/16~rG ) / g 2 R  2 (C27) 

The parameter l i obtains the values 11 = 9 and I n  = 2 in the cases I and II, 
respectively. The inverse of the quantity k i can be identified as Regge slope 
a R - 1 GeV-z provided the spinorial contributions to the value of the Regge 
slope can be neglected. As a consequence the constants G and gZR2/16~rGlj 
-G~ differ by an extremely small amount: (G i - G ) / G -  10-38! Observe 
that without the curvature term in action one would obtain for the constant 
g2R2 a value, which is 10 38 times larger than G. 

Which of the two alternatives then corresponds to the hadrons? The 
requirement that the energy should be positive for both kinds of strings 
favors the alternative II. The results found studying graphlike solutions to 
the equations of motion (Appendix D) also favor this choice. 

For the solutions of type (b) the inverse of the Regge slope is given by 
the expression 

k = p M + ( 1 / 2 G ) ( g - 1 )  (C28) 

where the quantity PM is the magnetostatic energy per unit length of the 
string. Hence the Regge slope is expected to be of the order of G and the 
corresponding objects should be extremely pointlike and probably also very 
massive (the same is expected to hold also for the strings of type I). 

Clearly, by adding spinors on the boundaries of the open string of type 
II, one obtains a model for pion (or p-meson). How then to construct other 
mesons? A tittle thought shows that one can build, not only mesons, but 
also baryons from the pionic string. The point is that the genus of the 
boundary component y2 can be increased by simply drilling "wormholds" 
starting from and ending at the boundary component in question [visualiza- 
tion: ~(apple) = S 2 and 8 (apple with wormhole = S 1 • Sl]. Obviously one 
can build all mesons using this procedure. Now, since baryons behave like 
strings in many respects (linear Regge trajectories), one might argue that 
baryons in fact correspond classically to 3-manifolds obtained by drilling a 
hole in a pionic string and by adding spinors on the resulting three 
boundary components. Of course, one can add an arbitrary number of sea 
quarks to the hadron in this way and perhaps also gluons. So, one can say 
that the hadronic interior solution is in definite sense universal (and 
probably so also the leptonic one). 
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Clearly, one could also start from closed string solutions and apply to 
them a similar procedure. The resulting "hadrons" would differ from the 
open string hadrons in that they would have only homologically trivial 
boundary components. Since the homology charge plays the role of coupling 
constant in the interactions described by dual diagrams in the sense that 
only the ends of the open string, having Ihl =1, are involved in these 
diagrams, one expects that this second type of hadron and ordinary hadrons 
have rather different strong interaction properties. It is perhaps worth 
noticing that the magnetic flux through the homologically charged boundary 
components is nontrivial, indeed the magnetostatic energy of the string has 
an interpretation as the interaction energy of two magnetic monopoles (in 
case II the gauge field is nondiagonal). 

C5. Small Perturbations around the Static Hadronic String. The equa- 
tions governing the small perturbations for the stringlike solutions are easily 
obtained from the equations of motion (C1) using the fact that the second 
fundamental form vanishes for the static string solutions. One obtains for 
the purely transversal perturbation, e.g., for the perturbations with 8s k = 0, 
the equations 

D x28rn~r = ~il--Is28m~. (C29) 

Here the symbol [] denotes the d'Alambert operator for the space specified 
by the lower index and the index T expresses that the perturbation is per- 
pendicular to the string. The parameter x i is given by the expression 

x, = l , / ( l , -  g 2 R V 1 6 ~ G  ) (C30) 

(l I=  9 and I n = 2). 
Now, what do we mean with small perturbations in our topological 

context? In the conventional approach one would of course restrict the 
perturbations to be small and certainly nonsingular everywhere. Now the 
situation is however different since one can always cut away the possible 
singularities and the resulting boundary component has a natural interpreta- 
tion as a particlelike excitation. In the following we shall apply both of these 
approaches. 

The everywhere regular solutions to (C30) can be written as a super- 
position of the products of plane waves and spherical harmonics: 

f~,,, = ekeiP'"'YL,,  (C31 ) 

where e k is a polarization vector orthogonal to the string orbit. The 
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2-momentum pk satisfies the dispersion relation 

p2 = _ x , L (  L + 1)/R,  2 (C32) 

Obviously, the wave vector p is either spacelike or has an imaginary time 
component. In the latter case the perturbation has an exponential time 
dependence exp(~om ~ (~0 - R h / G ,  where R h is a typical hadronic length!) 
and as a consequene, the string can be regarded unstable classically. The 
result is indeed puzzling. Of course, one could get rid of it by changing the 
overall sign in the definition of energy so that the quantity x~ would change 
sign, making the modes with L > 0 oscillatory. One could, however, argue 
that the conventional stability criteria should not be taken too seriously 
because now also the topologically trivial perturbations are allowed, and 
therefore the original definition of energy should not be given up. 

In the more general approach we give up the regularity requirement 
altogether, writing the perturbation as a superposition of the separable 
solutions: 

fJ'( p,  n, k )  = eip"z"f/ , '([z2l) (C33) 

Here z denotes the complex coordinate for S 2 and the function f satisfies the 
differential equation 

f , , +  (n + 1 ) f , _  k f  : 0 (C34) 
u u 

Moreover, the dispersion relation 

p 2  = __ tc ik  (C35) 

is satisfied. 
An important special case of (C33) is obtained, when the parameter k 

vanishes: k = 0. These kinds of solutions give rise to perturbations, which 
can be written in the form 

m k __f+k (Z, m + ) + f k  (Z, m_ ) (C36) 

where f+k-) is an analytic function of the variable z and the dependence on 
- m  ~ m 3 is arbitrary. Clearly, these solu- the light cone coordinate m +(_7- ~-) 

tions represent pulses propagating along the string with the velocity of light. 
The analyticity of f+k-) implies the presence of singularities, e.g., of cuts or 
poles unless the dependence on z is trivial. Polelike singularity can be 
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eliminated by cutting a hole around the pole, and as a consequence one has 
a hole in a hadron. Of course, the mere presence of a cut introduces a hole 
also. Since the parameters describing the position of the discontinuity or 
pole in general depend on the variable m+~_), the boundary component 
associated with the eliminated singularity is expected to move with a 
velocity of light or to be stationary (provided that the dependence on re+t_) 
is trivial). 

Concerning the interpretation of these singularities one should take 
into account that the "quanta" in question are associated with the transver- 
sal excitations of the string described by a vector quantity with two physical 
components and they satisfy a massless wave equation. Therefore, the 
interpretation as the classical counterparts of gluons is suggestive for the 
nonstationary boundary components. The stationary boundary components 
might correspond to sea quarks. 

As regards the nature of the more general "massive modes" it should 
be noticed that one obtains both oscillatory and tachyonic modes depending 
on the sign of the parameter k. Also it is to be expected that the elimination 
of singularities also now leads to particlelike excitations, but now they 
should behave like massive particles. Perhaps the interpretation as off mass 
shell gluons might be appropriate for the associated bosonic quanta. It is 
amusing to notice that the solutions of (C34) correspond to radially sym- 
metric, zero-energy solutions of an (n + 2)-dimensional Schr6dinger equa- 
tion in Coulombic potential k~ u. 

C6. Massless Partidelike Solutions. A rather general set of solutions is 
obtained by assuming first that X 4 is a submanifold of M 4 x S 2, 'where S 2 is 
a geodesic sphere, and second that X 4 is given either by the equations 

F(k.m,O)=O 

G(e.m,t~) = 0  (C37) 

or by the equations 

F(k.m,t~) = 0  

c ( p ,  = 0 (c38) 

Here k is a lightlike vector, e a spacelike polarization vector orthogonal to k, 
the variable p is a radial variable in the plane orthogonal to the wave vector 
associated with k: p = (ml 2 + m22) ~/2, and (O, ~) denotes the coordinates 
of S 2. 
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The equations of motion are satisfied because the quantities G ~p, T ~ ,  
and j~ appearing in them are proportional to the quantities k'~k ~ and k a, 
respectively (k can be regarded as a vector of X 4 also when Minkowsky 
coordinates are used for X 4) and because the field equations involve only 
contractions of type k . e ,  k . k ,  and k.ep (% unit vector in the direction of 
p), which all vanish. 

Concerning the interpretation of the solutions of the first type, which 
clearly represent massless particles, some remarks should be made. First, the 
solution manifold has necessarily a boundary since then it must have a finite 
extension in direction orthogonal to the polarization and wave vectors. 
Because the vector e defines a natural polarization vector, the interpretation 
as a classical counterpart of gauge boson or neutrino is suggestive (provided 
the number of boundary components is equal to 1). Second, since CP 2 has 
two nonequivalent geodesic submanifolds one obtains two solution types: 
the standard choices for the geodesic sphere S 2 give rise to purely diagonal 
and purely nondiagonal gauge fields corresponding to the cases I and II, 
respectively. Thixdly, there is a priori no restriction on the genus of the 
boundary component. The bosons with g > 0 induce generation changing 
transitions and they should be massive in the quantized theory. This is 
indeed expected since the transitions changing the boundary topology 
introduce mixing between different boson generations and therefore the 
mass matrix for these states has nonvanishing nondiagonal components. 
Diagonalization should provide masses for all the gauge bosons except the 
photon. Finally, also solutions with more than one boundary component are 
possible. The question whether they correspond to anything stable enough 
to be observable, is interesting. 

The second solution type has properties which make it a good candi- 
date for classical graviton. First, the solution can be closed and, in particu- 
lar, can have S 3 topology. Second, there is no vector polarization associated 
with the solution because of the rotational symmetry around the direction of 
motion. However, the deviation of the metric from flat metric defines a 
tensor polarization and so the solution has the nature of spin-2 particle. 

APPENDIX D: GRAPHLIKE SOLUTIONS 

This Appendix is devoted to the study of the solutions representable as 
graphs of some map f: M 4 ~ CP2. We shall first consider vacuum solutions 
and then shall concentrate on the Abelian subtheories. 

DI. Vacuum Solutions. The theory allows a great number of vacuum 
solutions besides the trivial ones (e.g., regions of M 4). One interesting type 
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of vacuum solution is obtained using the ansatz 

s k = s k ( m  ko) (D1) 

where mko is the preferred Cartesian coordinate of M 4. The requirement 

Skt O os k aoSt = const (D2) 

guarantees the flatness of the induced metric. A rather general solution 
satisfying (D2) is obtained, when s k satisfies the equations 

a02sk + { lkm} aoSmao s " =  FktOo s' (D3) 

Here  Fkl is an antisymmetric tensor in C P  2. Clearly (D3) corresponds math- 
ematically to a motion of a charged particle in the electromagnetic field. 

These vacuum solutions are as such rather uninteresting. The small 
perturbations around these solutions have some rather amusing properties. 
One finds easily that small perturbations satisfy the equation 

t338s k = 0 (D4) 

where I-13 is d'Alembert operator in the orthogonal complement of the linear 
subspace associated with the coordinate variable m ko. When m ko is space- 
like these perturbations clearly represent a massless gauge field 
polarized in the direction of m ko. When m ko is timelike the perturbation 
represents scalar potential ("timelike polarization"). A rather interesting 
feature of the perturbation is that the dependence on the coordinate 
variable is arbitrary. As a consequence the propagator associated with these 
perturbations is effectively that in a three-dimensional space. A first conse- 
quence is that timelike perturbations do not propagate at all in the ordinary 
sense. A second consequence is that the perturbation theoretic approach to 
the calculation of the transition amplitudes in the background defined by 
this kind of a vacuum solution, should be free of divergence difficulties. 
This because the loop integrals in three dimensions need no infinite subtrac- 
tions, when dimensional regularization is used ('t Hooft and Veltman, 1973). 
Of course, the same result should hold also for the spinorial functional 
integrals, because spinors are restricted to three-dimensional boundaries of 
the background X a. A second interesting feature of these solutions is that 
they in general are CP noninvariant (C performs a complex conjugation in 
CP2). 
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D2. Approximate Solutions to the Field Equations. In this section we 
study the approximate field equations obtained by expanding the exact field 
equations to the lowest order in the parameter R 2. In this approximation the 
field equations read as 

Tr( j~Fk,s '~)  = 0 (D5) 

As expected these equations follow from the M 4 gauge theory action with 
the constraints expressing the gauge field in terms of the coordinate vari- 
ables of CP 2. 

An interesting property of (D5) is that, when the CP 2 coordinates are 
restricted to a geodesic sphere, the field equations have an infinite parame- 
ter group of symmetries: The gauge field F~ (see Section C2) can be thought 
as a 2-form induced from the area form of S2i and thus is invariant under 
the area-preserving transformation of a 2-sphere, e.g., the canonical trans- 
formations. 

It is rather easy to find solutions to the equations (D5). One class of 
solutions is obtained via the ansatz 

u = cosO = h ( m  i) 

= ~orn ~ + f ( u )  

The field equations reduce to the condition 

i--13h = 0 

(D6) 

(or) 

e.g., the quantity h is proportional to a potential associated with a sourceless 
U(1) gauge field. The function f is arbitrary in this approximation (canoni- 
cal invariance). 

The following features of these solutions appear to be rather general: 
(a) The compactness of CP 2 introduces regions where the solution is 

undefined. For instance, for h = c / r  (Coulombic potential) the cutoff radius 
is r = C .  

(b) The massive solutions are necessarily gauge charged (electrically 
neutral solutions are of course obtained in the S~I case). To see this, observe 
that the g00 component of the metric is equal to 

goo = 1 - R2sin2Oo:2 (D8) 

Therefore one must have 

u = a  + b / r  + O ( 1 / r  2) (D9) 
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for massive solutions. This in turn implies that the gauge field has I / r  2 
behavior so that the charge is proportional to the parameter M / ~ .  The 
charge can be made arbitrarily small by a suitable choice of the parameters 
a and b but solutions with exactly vanishing charge are impossible. For the 
solution type II the nonvanishing gauge charge should lead to no long-range 
forces because the associated field quanta are expected to be massive. 

(c) The gravitational potential ~gr = g0o - 1 satisfies Poisson equation 

D 3 O g  r = --  4"rrGiTy~176 M (DIO) 

Here the gravitational constant G i is given by the expression 

G i = g2R2/167rl i  ( D l l )  

For the solution type II the constant G n is practically equal to Newton's 
constant: (G n - G ) / G  - 10 -38. The identification of the vacuum II as the 
physical vacuum is favored because the cancellation between the gauge field 
and gravitational energies is almost complete. 

D3. Stationary, Spherically Symmetric Solution Ansatz. A solution 
ansatz leading to a stationary, spherically symmetric metric and Abelian 
gauge field is given by 

u = g ( r ) ,  m ~ 1 7 6  

d~ = ~ox ~ + f ( r ) ,  r M = r (D12) 

[r M denotes the radial coordinate of M 4 :  rM 2 = E~= l(mi)2]. The metric and 
gauge field associated with the solution ansatz are 

and 

go0 = )k2 - -  R 2 s i n 2 0 ( ~ 2  

g0r = h ' -  R2sin2Oo~f ' 

g#~ = - 1 -  RZs in20  ( f ' ) 2  + ( h ' ) 2 - (  g ' )  2 

respectively. The condition 
additive constant 

Fdr= nicou'/2 

go, = 0 fixes the 

h ' =  sin2| 

(DI3) 

(DI4) 

function h apart from an 

(D15) 
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The parameter ?~ is fixed by the boundary condition g0o(oo) = 1. 

X 2 = 1 + R2sin20~to 2 (D16) 

Next we proceed to study the field equations associated with this 
ansatz. The isometry �9 ~ �9 + e gives rise to a conservation law 

)1/2 ( T  r r -  t c G " ) f ' s i n 2 0 ( -  g = C (D17) 

Only the value C = 0 is physically acceptable in (D17) by the requirement of 
asymptotic flatness and therefore the equation 

T " =  KG'" (D18) 

results. As a consequence the metric behaves asymptotically like the 
Schwartzchild metric (Misner etal., 1973; Adler etal.,  1975) since the 
requirement Gr'- = O ( 1 / r  4) implies: g0o - 1 = g ,  + 1 + O ( 1 / r  2) asymptoti- 
cally. The equation (D18) makes it possible to express the quantity f '  in 
terms of the variable g and its derivatives. By straightforward manipulation 
one finds for the function f the asymptotic behavior f - r ~/2 and f - r in the 
cases u(oo) :~ 1 and u(oo) = 1, respectively. 

Instead of devoting ourselves to the study of the rather complicated 
equation associated with the coordinate variable u, we shall proceed to look 
at whether it is possible to imbed the Reissner-Nordstrt~m solution (Misner 
et al., 1973; Adler et al., 1975) 

goo = - g~l  = 1 - 2 G M / r  + x q 2 / r  

For = q / r  2 (D19) 

satisfying the Einstein-Maxwell equations 

T~t~ = xG~# 

j~=O ( D l l )  

to H for some preferred values of the parameters gR and G. Clearly, this 
kind of imbedding affords a solution also to the field equations of our 
theory. The ansatz 

u = a + b / r  (D12) 
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indeed solves (D19) provided one has 

G M  = - abR2~ 2 

Kq2/2 = b2R2o~ 2 

n i g h / 2  = q (D13) 

The last two equations lead to the condition 

G = gZR2/16~rGli = G i (D14) 

The condition (DI4) clearly fails to be satisfied but the failure is 
extremely small for the solution type II: (Gxx - G ) / G  - 10-38. Therefore we 
expect that the Reissner-Nordstrrm solution is a good approximate solu- 
tion to the field equations in this case and that the corrections to 
Reissner-Nordstr~3m solution can be expanded in the powers of the ex- 
tremely small parameter ( G I I -  G ) / G .  

D4. Lorentz-Invariant Solutions. Perhaps the simplest possible solution 
ansatz one can imagine is the Lorentz-invariant graphlike solution ansatz 
having the form 

m ~ = (1 + r2 ) l / z t  

r M = rt 

s* =sk(t) (r)15) 

The induced metric has the Robertson-Walker form (Misner et al., 1973; 
Adler et al., 1975) 

ds 2= ( 1 - s k ,  O t s k O , s t ) d t 2 - t 2 ( d r 2 / ( l + r a ) + r 2 d f ~  2) (D16) 

The components of the Einstein tensor are given by the expressions 

G ~  2] 

Gij = 8ij( - 2 a " / a  - / 9 / 3 )  (DI7)  

Here the prime denotes derivative with respect to the proper time r = 
f(goo)l/Z dt. 
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The basic proper ty  of the solution is that it is necessarily restricted to 
M 4 • S I, where S l is a geodesic line in S. This can be seen by choosing the 
coordinates  of  S so that the solution can be represented in the form 

s k = const,  k ~ k 0 

The equations of mot ion for the coordinate  variables s k, k :~ k 0, are: 
G~176 = 0 and imply Skoo = 0. Therefore a geodesic line is in question. This 
properly makes it possible to concentrate  on a specific solution, say, the one 
given by equat ions 

r = o o ,  ~b = 0  

0 = rr/2,  q ~ = / ( t )  (D18)  

The equation of  mot ion is most  easily expressed as a conservation law 
associated with the infinitesimal isometry q~ ~ q~ + e. 

GOOOof(_  g) t /2  = const  (D19) 

This equat ion has the integral 

OoI = ( 1 / r ) y ' / 2 / ( 1  + y) ' /2 

Here the quant i ty  y is defined as 

(D20)  

y = ( C / t )  '/3 (D21) 

This integral, of  course, fixes the metric completely. 
The solution satisfies the "equat ion  of  state" p = - 9 p ,  where the 

pressure p is defined as the quant i ty  p = G i i / 3 .  The quant i ty  p behaves in 
the limits t --* 0 and t --* oo as p - t -5/3 and p - t -7/3,  respectively. The fact 
that  the Poincar6 energy density associated with the solution is negative 
makes the interpretat ion as some kind of an idealization for cosmology 
impossible. The interpketation as a negative energy vacuum solution might 
be more appropriate.  
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